Phishing Website Detection Using a Combined Model of ANN and LSTM
- URL: http://arxiv.org/abs/2404.10780v1
- Date: Sun, 24 Mar 2024 14:46:02 GMT
- Title: Phishing Website Detection Using a Combined Model of ANN and LSTM
- Authors: Muhammad Shoaib Farooq, Hina jabbar,
- Abstract summary: phishing is a type of cybercrime, which has the purpose of stealing the personal information of the computer user.
The attackers used personal information like account IDs, passwords, and usernames for the purpose of some fraudulent activities against the user of the computer.
To overcome this problem researchers focused on the machine learning and deep learning approaches.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this digital era, our lives highly depend on the internet and worldwide technology. Wide usage of technology and platforms of communication makes our lives better and easier. But on the other side it carries out some security issues and cruel activities, phishing is one activity of these cruel activities. It is a type of cybercrime, which has the purpose of stealing the personal information of the computer user, and enterprises, which carry out fake websites that are the copy of the original websites. The attackers used personal information like account IDs, passwords, and usernames for the purpose of some fraudulent activities against the user of the computer. To overcome this problem researchers focused on the machine learning and deep learning approaches. In our study, we are going to use machine learning and deep learning models to identify the fake web pages on the secondary dataset.
Related papers
- NoPhish: Efficient Chrome Extension for Phishing Detection Using Machine Learning Techniques [0.0]
"NoPhish" shall identify a phishing webpage based on several Machine Learning techniques.
We have used the training dataset from "PhishTank" and extracted the 22 most popular features.
The performance results show that Random Forest delivers the best precision.
arXiv Detail & Related papers (2024-09-01T18:59:14Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - The Performance of Sequential Deep Learning Models in Detecting Phishing Websites Using Contextual Features of URLs [0.0]
This study focuses on the detection of phishing websites using deep learning models such as Multi-Head Attention, Temporal Convolutional Network (TCN), BI-LSTM, and LSTM.
Results demonstrate that Multi-Head Attention and BI-LSTM model outperform some other deep learning-based algorithms such as TCN and LSTM in producing better precision, recall, and F1-scores.
arXiv Detail & Related papers (2024-04-15T13:58:22Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
Phishing, a well-known cyberattack, revolves around the creation of phishing webpages and the dissemination of corresponding URLs.
Various techniques are available for preemptively categorizing zero-day phishing URLs by distilling unique attributes and constructing predictive models.
This proposal delves into persistent challenges within phishing detection solutions, particularly concentrated on the preliminary phase of assembling comprehensive datasets.
We propose a potential solution in the form of a tool engineered to alleviate bias in ML models.
arXiv Detail & Related papers (2024-01-16T13:45:54Z) - "Do Users fall for Real Adversarial Phishing?" Investigating the Human response to Evasive Webpages [7.779975012737389]
State-of-the-art solutions entail the application of machine learning to detect phishing websites by checking if they visually resemble webpages of well-known brands.
Some security companies began to deploy them also in their phishing detection systems (PDS)
In this paper, we scrutinize whether 'genuine phishing websites' that evade 'commercial ML-based PDS' represent a problem "in reality"
arXiv Detail & Related papers (2023-11-28T00:08:48Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
We design an intelligent approach to online privacy protection that leverages supervised learning.
By detecting and blocking data collection that might infringe on a user's privacy, we can restore a degree of digital privacy to the user.
arXiv Detail & Related papers (2023-04-06T05:20:16Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - Phishing Detection Using Machine Learning Techniques [0.0]
Phishers try to deceive their victims by social engineering or creating mock-up websites to steal information.
One of the most successful methods for detecting these malicious activities is Machine Learning.
In this paper, we compared the results of multiple machine learning methods for predicting phishing websites.
arXiv Detail & Related papers (2020-09-20T11:52:52Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.