論文の概要: Duality induced by an embedding structure of determinantal point process
- arxiv url: http://arxiv.org/abs/2404.11024v1
- Date: Wed, 17 Apr 2024 02:57:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 15:24:20.911641
- Title: Duality induced by an embedding structure of determinantal point process
- Title(参考訳): 決定点過程の埋め込み構造による双対性
- Authors: Hideitsu Hino, Keisuke Yano,
- Abstract要約: DPPが対数線型モデルの指数族に埋め込まれていることが示される。
限界カーネルと$L$アンサンブルカーネルに関連する双対性が発見された。
- 参考スコア(独自算出の注目度): 2.325021848829375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the information geometrical structure of a determinantal point process (DPP). It demonstrates that a DPP is embedded in the exponential family of log-linear models. The extent of deviation from an exponential family is analyzed using the $\mathrm{e}$-embedding curvature tensor, which identifies partially flat parameters of a DPP. On the basis of this embedding structure, the duality related to a marginal kernel and an $L$-ensemble kernel is discovered.
- Abstract(参考訳): 本稿では,行列点過程(DPP)の情報幾何学的構造について検討する。
DPPが対数線型モデルの指数族に埋め込まれていることが示される。
指数族からの偏差の程度を$\mathrm{e}$-embedding曲率テンソルを用いて解析し、DPPの部分平坦なパラメータを同定する。
この埋め込み構造に基づいて、限界カーネルと$L$アンサンブルカーネルに関連する双対性が発見された。
関連論文リスト
- On the Complexity of Identification in Linear Structural Causal Models [3.44747819522562]
空間内で動作するジェネリック識別のための,新しい音響および完全アルゴリズムを提案する。
また,同定が一般に困難であることを示す。
論文 参考訳(メタデータ) (2024-07-17T13:11:26Z) - Extracting Manifold Information from Point Clouds [0.0]
カーネルベースの手法は$mathbbRd$のサブセットのシグネチャ関数を構成するために提案される。
点雲の解析と解析が主な応用である。
論文 参考訳(メタデータ) (2024-03-30T17:21:07Z) - Shape And Structure Preserving Differential Privacy [70.08490462870144]
正方形距離関数の勾配がラプラス機構よりも感度をよりよく制御できることを示す。
また,2乗距離関数の勾配を用いることで,ラプラス機構よりも感度を制御できることを示す。
論文 参考訳(メタデータ) (2022-09-21T18:14:38Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Theoretical Connection between Locally Linear Embedding, Factor
Analysis, and Probabilistic PCA [13.753161236029328]
リニア埋め込み(LLE)は非線形スペクトル次元減少および多様体学習法である。
本稿では,各データポイントが線形再構成重みを潜在因子として条件付けされていると仮定する観点から,線形再構成ステップを考察する。
論文 参考訳(メタデータ) (2022-03-25T21:07:20Z) - q-Paths: Generalizing the Geometric Annealing Path using Power Means [51.73925445218366]
我々は、幾何学と算術の混合を特別なケースとして含むパスのファミリーである$q$-pathsを紹介した。
幾何経路から離れた小さな偏差がベイズ推定に経験的利得をもたらすことを示す。
論文 参考訳(メタデータ) (2021-07-01T21:09:06Z) - Factor Analysis, Probabilistic Principal Component Analysis, Variational
Inference, and Variational Autoencoder: Tutorial and Survey [5.967999555890417]
因子分析、確率的主成分分析(PCA)、変分推論、変分オートエンコーダ(VAE)に関するチュートリアルおよび調査論文。
彼らは、すべてのデータポイントが低次元の潜伏因子から生成されるか、または引き起こされると仮定する。
推論と生成動作のために、これらのモデルは、データ空間における新しいデータポイントの生成にも使用できる。
論文 参考訳(メタデータ) (2021-01-04T01:29:09Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
任意の$d$値論理関数を符号化する有限関数符号化(FFE)を導入する。
それらの構造的特性について検討する。
論文 参考訳(メタデータ) (2020-12-01T13:53:23Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。