論文の概要: The Causal Chambers: Real Physical Systems as a Testbed for AI Methodology
- arxiv url: http://arxiv.org/abs/2404.11341v1
- Date: Wed, 17 Apr 2024 13:00:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:04:48.441360
- Title: The Causal Chambers: Real Physical Systems as a Testbed for AI Methodology
- Title(参考訳): 因果室:AI方法論のテストベッドとしてのリアル物理システム
- Authors: Juan L. Gamella, Jonas Peters, Peter Bühlmann,
- Abstract要約: AI、機械学習、統計学のいくつかの分野において、新しい方法やアルゴリズムの検証は、適切な実世界のデータセットの不足によって妨げられることが多い。
我々は,非自明だがよく理解された物理的システムから,大規模データセットを迅速かつ安価に生成できる2つのデバイスを構築した。
- 参考スコア(独自算出の注目度): 10.81691411087626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In some fields of AI, machine learning and statistics, the validation of new methods and algorithms is often hindered by the scarcity of suitable real-world datasets. Researchers must often turn to simulated data, which yields limited information about the applicability of the proposed methods to real problems. As a step forward, we have constructed two devices that allow us to quickly and inexpensively produce large datasets from non-trivial but well-understood physical systems. The devices, which we call causal chambers, are computer-controlled laboratories that allow us to manipulate and measure an array of variables from these physical systems, providing a rich testbed for algorithms from a variety of fields. We illustrate potential applications through a series of case studies in fields such as causal discovery, out-of-distribution generalization, change point detection, independent component analysis, and symbolic regression. For applications to causal inference, the chambers allow us to carefully perform interventions. We also provide and empirically validate a causal model of each chamber, which can be used as ground truth for different tasks. All hardware and software is made open source, and the datasets are publicly available at causalchamber.org or through the Python package causalchamber.
- Abstract(参考訳): AI、機械学習、統計学のいくつかの分野において、新しい方法やアルゴリズムの検証は、適切な実世界のデータセットの不足によって妨げられることが多い。
研究者はしばしばシミュレーションデータに目を向ける必要があり、提案手法の実際の問題への適用性に関する限られた情報が得られる。
一歩前進して、非自明だがよく理解された物理的システムから、大規模データセットを迅速かつ安価に生成できる2つのデバイスを構築しました。
因果室と呼ばれる装置は、コンピュータ制御された研究室で、これらの物理システムから変数の配列を操作および測定することができ、様々な分野のアルゴリズムのリッチなテストベッドを提供する。
本稿では、因果発見、分布外一般化、変化点検出、独立成分分析、記号回帰などの分野における一連のケーススタディを通して、潜在的な応用を解説する。
因果推論に応用するためには、チャンバーは慎重に介入を行うことができる。
また,各チャンバーの因果モデルを提供し,実証的に検証する。
すべてのハードウェアとソフトウェアはオープンソースであり、データセットは causalchamber.org または Python パッケージ causalchamber で公開されている。
関連論文リスト
- CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series [4.008958683836471]
CAnDOITは、観測データと介入データの両方を用いて因果モデルを再構築する因果発見手法である。
因果解析における介入データの利用は、ロボット工学のような現実世界の応用には不可欠である。
CAnDOITのPython実装も開発され、GitHubで公開されている。
論文 参考訳(メタデータ) (2024-10-03T13:57:08Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Lightweight Automated Feature Monitoring for Data Streams [1.4658400971135652]
そこで本稿では,データドリフトを検出するFM(Feature Monitoring)システムを提案する。
システムは、システムによって使用されるすべての機能を監視し、アラームが発生するたびにランク付けされる解釈可能な機能を提供します。
これは、FMが特定のタイプの問題を検出するためにカスタムシグナルを追加する必要をなくし、利用可能な機能の空間を監視するのに十分であることを示している。
論文 参考訳(メタデータ) (2022-07-18T14:38:11Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Occupancy Detection in Room Using Sensor Data [0.0]
本稿では,複数の変数を用いてセンサデータを用いて占有率を検出するソリューションを提案する。
Decision Tree, Random Forest, Gradient Boosting Machine, Logistic Regression, Naive Bayes, Kernelized SVM, K-Nearest Neighborsの7つの有名なアルゴリズムがテストされ、比較されている。
論文 参考訳(メタデータ) (2021-01-10T19:53:57Z) - Meta Learning for Causal Direction [29.00522306460408]
小型データ設定における原因と効果の区別を可能にする新しい生成モデルを提案する。
提案手法は, 各種合成データと実世界のデータを用いて実証し, 種々のデータセットサイズにおける方向検出の精度を高い精度で維持可能であることを示す。
論文 参考訳(メタデータ) (2020-07-06T15:12:05Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。