論文の概要: On the Scalability of GNNs for Molecular Graphs
- arxiv url: http://arxiv.org/abs/2404.11568v2
- Date: Tue, 30 Apr 2024 20:27:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 17:45:32.784618
- Title: On the Scalability of GNNs for Molecular Graphs
- Title(参考訳): 分子グラフにおけるGNNのスケーラビリティについて
- Authors: Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip Fradkin, Dominique Beaini,
- Abstract要約: グラフニューラルネットワーク(GNN)は、スパース演算の効率の低下、大規模なデータ要求、さまざまなアーキテクチャの有効性の明確さの欠如など、スケールのメリットをまだ示していない。
我々は,2次元分子グラフの公開コレクションにおいて,メッセージパッシングネットワーク,グラフトランスフォーマー,ハイブリッドアーキテクチャを解析する。
初めて、GNNは、深度、幅、分子数、ラベルの数、事前訓練データセットの多様性の増大によって、非常に恩恵を受けることを観察した。
- 参考スコア(独自算出の注目度): 7.402389334892391
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have observed a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules, number of labels, and the diversity in the pretraining datasets. We further demonstrate strong finetuning scaling behavior on 38 highly competitive downstream tasks, outclassing previous large models. This gives rise to MolGPS, a new graph foundation model that allows to navigate the chemical space, outperforming the previous state-of-the-arts on 26 out the 38 downstream tasks. We hope that our work paves the way for an era where foundational GNNs drive pharmaceutical drug discovery.
- Abstract(参考訳): ディープラーニングモデルをスケールすることは、言語モデリングと画像生成における最近の革命の中心である。
モデルのサイズ、データセットのサイズ、パフォーマンスには強い関係がある。
しかし、グラフニューラルネットワーク(GNN)のような構造ベースのアーキテクチャは、スパース演算の効率の低下、大規模なデータ要求、各種アーキテクチャの有効性に関する明確さの欠如など、スケールのメリットを示さない。
このようなGNNの欠点を,そのスケーリング行動を研究することによって解決する。
具体的には,2次元分子グラフの公開コレクションにおいて,メッセージパッシングネットワーク,グラフトランスフォーマー,ハイブリッドアーキテクチャを解析する。
初めて、GNNは、深度、幅、分子数、ラベルの数、事前学習データセットの多様性の増大によって、非常に恩恵を受けることを観察した。
さらに、38の高度に競争力のある下流タスクにおいて、従来の大規模モデルよりも優れた微調整のスケーリング挙動を示す。
これは、化学空間をナビゲートできる新しいグラフ基盤モデルであるMolGPSが、38の下流タスクのうち26の最先端タスクより優れている。
我々の研究が、基礎的なGNNが医薬品の発見を促進する時代への道を開くことを願っている。
関連論文リスト
- Enhancing Size Generalization in Graph Neural Networks through Disentangled Representation Learning [7.448831299106425]
DISGENは、グラフ表現からサイズ因子をアンタングルするために設計された、モデルに依存しないフレームワークである。
実験の結果, DISGENは実世界のデータセットにおいて, 最先端のモデルよりも最大6%優れていた。
論文 参考訳(メタデータ) (2024-06-07T03:19:24Z) - Graph Transformers for Large Graphs [57.19338459218758]
この研究は、モデルの特徴と重要な設計制約を識別することに焦点を当てた、単一の大規模グラフでの表現学習を前進させる。
この研究の重要な革新は、局所的な注意機構と組み合わされた高速な近傍サンプリング技術の作成である。
ogbn-products と snap-patents の3倍の高速化と16.8%の性能向上を報告し、ogbn-100M で LargeGT を5.9% の性能改善で拡張した。
論文 参考訳(メタデータ) (2023-12-18T11:19:23Z) - Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNは、グラフを学習するニューラルネットワークの強力なファミリーである。
GNNのスケーリングは、肥大化または拡大によって、不健康な勾配、過度なスムースメント、情報のスカッシングといった問題に悩まされる。
本稿では,現在のGNNの深層化や拡張ではなく,GNNに適したモデルスープをデータ中心の視点で表現することを提案する。
論文 参考訳(メタデータ) (2023-06-18T03:33:46Z) - Benchmarking Graph Neural Networks for FMRI analysis [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための強力なツールとして登場した。
うつ病と自閉症スペクトラム障害の診断における5つのGNNアーキテクチャの性能について検討・評価を行った。
機能的脳データのための最適グラフ構造を作成することは、GNNの性能を阻害する主要なボトルネックである。
論文 参考訳(メタデータ) (2022-11-16T14:16:54Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Image-Like Graph Representations for Improved Molecular Property
Prediction [7.119677737397071]
本稿では,CubeMol と呼ばれる GNN の必要性を完全に回避する,新しい固有分子表現法を提案する。
我々の定次元表現は、トランスモデルと組み合わせると、最先端のGNNモデルの性能を超え、拡張性を提供する。
論文 参考訳(メタデータ) (2021-11-20T22:39:11Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Data Augmentation for Graph Neural Networks [32.24311481878144]
半教師付きノード分類を改善する文脈において,グラフニューラルネットワーク(GNN)のグラフデータ拡張について検討した。
本研究は,階層内エッジの促進とグラフ構造におけるクラス間エッジの復号化のために,クラス-ホモフィル構造を効果的に符号化できることを示唆する。
我々の主な貢献はGAugグラフデータ拡張フレームワークを導入し、これらの洞察を活用してエッジ予測によるGNNベースのノード分類の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-11T21:17:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。