論文の概要: A Review of Explainable Artificial Intelligence in Manufacturing
- arxiv url: http://arxiv.org/abs/2107.02295v1
- Date: Mon, 5 Jul 2021 21:59:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 14:00:36.229859
- Title: A Review of Explainable Artificial Intelligence in Manufacturing
- Title(参考訳): 製造における説明可能な人工知能の展望
- Authors: Georgios Sofianidis, Jo\v{z}e M. Ro\v{z}anec, Dunja Mladeni\'c,
Dimosthenis Kyriazis
- Abstract要約: 製造領域における人工知能(AI)システムの実装は、高い生産効率、優れた性能、より安全な運用を可能にする。
これらのモデルの精度が高いにもかかわらず、それらは主にブラックボックスと考えられており、人間には理解できない。
本稿では,モデルの透明性を高める手段として,説明可能な人工知能(XAI)技術の概要を紹介する。
- 参考スコア(独自算出の注目度): 0.8793721044482613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The implementation of Artificial Intelligence (AI) systems in the
manufacturing domain enables higher production efficiency, outstanding
performance, and safer operations, leveraging powerful tools such as deep
learning and reinforcement learning techniques. Despite the high accuracy of
these models, they are mostly considered black boxes: they are unintelligible
to the human. Opaqueness affects trust in the system, a factor that is critical
in the context of decision-making. We present an overview of Explainable
Artificial Intelligence (XAI) techniques as a means of boosting the
transparency of models. We analyze different metrics to evaluate these
techniques and describe several application scenarios in the manufacturing
domain.
- Abstract(参考訳): 製造領域における人工知能(AI)システムの実装は、高い生産効率、優れた性能、より安全な運用を可能にし、ディープラーニングや強化学習技術といった強力なツールを活用する。
これらのモデルの精度は高いが、ほとんどはブラックボックスと見なされており、人間には理解できない。
不透明さは、意思決定の文脈において重要な要因であるシステムの信頼に影響を与える。
本稿では,モデルの透明性を高める手段として,説明可能な人工知能(XAI)技術の概要を紹介する。
これらの技術を評価するために異なるメトリクスを分析し、製造領域におけるいくつかのアプリケーションシナリオを説明する。
関連論文リスト
- Explainability in AI Based Applications: A Framework for Comparing Different Techniques [2.5874041837241304]
ビジネスアプリケーションでは、理解可能性と精度のバランスをとる適切な説明可能性方法を選択することが課題である。
本稿では,異なる説明可能性手法の一致を評価するための新しい手法を提案する。
多様な説明可能性手法の合意を理解するための実践的な枠組みを提供することにより、ビジネスアプリケーションにおける解釈可能なAIシステムのより広範な統合を促進することを目的としている。
論文 参考訳(メタデータ) (2024-10-28T09:45:34Z) - SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals [0.0]
本稿では,新たな評価手法であるSCENE(Soft Counterfactual Evaluation for Natural Language Explainability)を紹介する。
トークンベースの置換に焦点を当てることで、SCENEは文脈的に適切で意味論的に意味のあるソフトカウンタブルを作成する。
SCENEは様々なXAI技法の強みと限界についての貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-08-08T16:36:24Z) - Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
この文脈でeXplainable AI(XAI)ツールとテクニックをレビューする。
私たちは、AI決定を透明にする彼らの役割、特に人間が関与する重要なシナリオに重点を置いています。
モデル性能と説明可能性のバランスをとることを目的とした,現在の限界と今後の研究について論じる。
論文 参考訳(メタデータ) (2024-04-17T17:49:38Z) - Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review [1.6006550105523192]
大規模言語モデル(LLM)の能力を解き放つ上で,迅速なエンジニアリングが果たす重要な役割を概観する
自己整合性、思考の連鎖、そして生成された知識などの技術を含む、素早い工学の基礎的方法論と先進的な方法論の両方を検査する。
レビューはまた、AI能力の進歩におけるエンジニアリングの急進的な役割を反映し、将来の研究と応用のための構造化されたフレームワークを提供する。
論文 参考訳(メタデータ) (2023-10-23T09:15:18Z) - Does Your Model Think Like an Engineer? Explainable AI for Bearing Fault
Detection with Deep Learning [20.488966890562004]
本研究では,振動信号から転がり要素軸受の欠陥を検知する作業に焦点をあてる。
本稿では,モデルの基本となる論理が専門家の推論とどの程度うまく対応しているかを評価するための,新しい,ドメイン固有の属性フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:58:11Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。