論文の概要: A Review of Explainable Artificial Intelligence in Manufacturing
- arxiv url: http://arxiv.org/abs/2107.02295v1
- Date: Mon, 5 Jul 2021 21:59:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 14:00:36.229859
- Title: A Review of Explainable Artificial Intelligence in Manufacturing
- Title(参考訳): 製造における説明可能な人工知能の展望
- Authors: Georgios Sofianidis, Jo\v{z}e M. Ro\v{z}anec, Dunja Mladeni\'c,
Dimosthenis Kyriazis
- Abstract要約: 製造領域における人工知能(AI)システムの実装は、高い生産効率、優れた性能、より安全な運用を可能にする。
これらのモデルの精度が高いにもかかわらず、それらは主にブラックボックスと考えられており、人間には理解できない。
本稿では,モデルの透明性を高める手段として,説明可能な人工知能(XAI)技術の概要を紹介する。
- 参考スコア(独自算出の注目度): 0.8793721044482613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The implementation of Artificial Intelligence (AI) systems in the
manufacturing domain enables higher production efficiency, outstanding
performance, and safer operations, leveraging powerful tools such as deep
learning and reinforcement learning techniques. Despite the high accuracy of
these models, they are mostly considered black boxes: they are unintelligible
to the human. Opaqueness affects trust in the system, a factor that is critical
in the context of decision-making. We present an overview of Explainable
Artificial Intelligence (XAI) techniques as a means of boosting the
transparency of models. We analyze different metrics to evaluate these
techniques and describe several application scenarios in the manufacturing
domain.
- Abstract(参考訳): 製造領域における人工知能(AI)システムの実装は、高い生産効率、優れた性能、より安全な運用を可能にし、ディープラーニングや強化学習技術といった強力なツールを活用する。
これらのモデルの精度は高いが、ほとんどはブラックボックスと見なされており、人間には理解できない。
不透明さは、意思決定の文脈において重要な要因であるシステムの信頼に影響を与える。
本稿では,モデルの透明性を高める手段として,説明可能な人工知能(XAI)技術の概要を紹介する。
これらの技術を評価するために異なるメトリクスを分析し、製造領域におけるいくつかのアプリケーションシナリオを説明する。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Explainable artificial intelligence (XAI): from inherent explainability to large language models [0.0]
説明可能なAI(XAI)技術は、機械学習モデルの説明可能性や解釈可能性を促進する。
本稿では、本質的に解釈可能なモデルから現代的なアプローチまで、説明可能なAI手法の進歩について詳述する。
我々は、視覚言語モデル(VLM)フレームワークを利用して、他の機械学習モデルの説明可能性を自動化または改善する説明可能なAI技術についてレビューする。
論文 参考訳(メタデータ) (2025-01-17T06:16:57Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
AIモデルの特徴である"ブラックボックス"は、解釈可能性、透明性、信頼性を制約する。
本研究では,AIモデルによる説明の正確性,解釈可能性,堅牢性,公正性,完全性を評価するための統合XAI評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-05T05:30:10Z) - Explainability in AI Based Applications: A Framework for Comparing Different Techniques [2.5874041837241304]
ビジネスアプリケーションでは、理解可能性と精度のバランスをとる適切な説明可能性方法を選択することが課題である。
本稿では,異なる説明可能性手法の一致を評価するための新しい手法を提案する。
多様な説明可能性手法の合意を理解するための実践的な枠組みを提供することにより、ビジネスアプリケーションにおける解釈可能なAIシステムのより広範な統合を促進することを目的としている。
論文 参考訳(メタデータ) (2024-10-28T09:45:34Z) - Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
この文脈でeXplainable AI(XAI)ツールとテクニックをレビューする。
私たちは、AI決定を透明にする彼らの役割、特に人間が関与する重要なシナリオに重点を置いています。
モデル性能と説明可能性のバランスをとることを目的とした,現在の限界と今後の研究について論じる。
論文 参考訳(メタデータ) (2024-04-17T17:49:38Z) - Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review [1.6006550105523192]
大規模言語モデル(LLM)の能力を解き放つ上で,迅速なエンジニアリングが果たす重要な役割を概観する
自己整合性、思考の連鎖、そして生成された知識などの技術を含む、素早い工学の基礎的方法論と先進的な方法論の両方を検査する。
レビューはまた、AI能力の進歩におけるエンジニアリングの急進的な役割を反映し、将来の研究と応用のための構造化されたフレームワークを提供する。
論文 参考訳(メタデータ) (2023-10-23T09:15:18Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。