論文の概要: Physics-informed active learning for accelerating quantum chemical simulations
- arxiv url: http://arxiv.org/abs/2404.11811v2
- Date: Tue, 16 Jul 2024 07:16:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 20:59:06.779393
- Title: Physics-informed active learning for accelerating quantum chemical simulations
- Title(参考訳): 物理インフォームドアクティブラーニングによる量子化学シミュレーションの高速化
- Authors: Yi-Fan Hou, Lina Zhang, Quanhao Zhang, Fuchun Ge, Pavlo O. Dral,
- Abstract要約: 本稿では,量子化学シミュレーションにおけるロバストなデータ効率ポテンシャル構築のためのエンドツーエンドALを提案する。
本プロトコルは,物理インフォームドによるトレーニングポイントのサンプリング,初期データの自動選択,不確実性定量化,収束モニタリングに基づく。
これらの調査は、高性能コンピューティングクラスタ上での純粋な量子化学計算ではなく、数週間を要した。
- 参考スコア(独自算出の注目度): 10.56535364437456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum chemical simulations can be greatly accelerated by constructing machine learning potentials, which is often done using active learning (AL). The usefulness of the constructed potentials is often limited by the high effort required and their insufficient robustness in the simulations. Here we introduce the end-to-end AL for constructing robust data-efficient potentials with affordable investment of time and resources and minimum human interference. Our AL protocol is based on the physics-informed sampling of training points, automatic selection of initial data, uncertainty quantification, and convergence monitoring. The versatility of this protocol is shown in our implementation of quasi-classical molecular dynamics for simulating vibrational spectra, conformer search of a key biochemical molecule, and time-resolved mechanism of the Diels-Alder reactions. These investigations took us days instead of weeks of pure quantum chemical calculations on a high-performance computing cluster. The code in MLatom and tutorials are available at https://github.com/dralgroup/mlatom.
- Abstract(参考訳): 量子化学シミュレーションは、しばしばアクティブラーニング(AL)を使用して行われる機械学習ポテンシャルを構築することで、大幅に加速することができる。
構築されたポテンシャルの有用性は、必要とされる高い労力とシミュレーションにおいて不十分なロバスト性によって制限されることが多い。
ここでは、時間とリソースを手頃な価格で投資し、人間の干渉を最小限に抑えて、堅牢なデータ効率ポテンシャルを構築するためのエンドツーエンドALを紹介する。
我々のALプロトコルは、物理インフォームドされたトレーニングポイントのサンプリング、初期データの自動選択、不確実性定量化、収束モニタリングに基づいている。
このプロトコルの汎用性は、振動スペクトルをシミュレートするための準古典分子動力学、重要な生化学分子のコンホメータ探索、ディールス・アルダー反応の時間分解機構の実装において示される。
これらの調査は、高性能コンピューティングクラスタ上での純粋な量子化学計算ではなく、数週間を要した。
MLatomとチュートリアルのコードはhttps://github.com/dralgroup/mlatom.comで公開されている。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Study on Quantum Car-Parrinello Molecular Dynamics with Classical Shadows for Resource Efficient Molecular Simulation [0.24578723416255746]
分子動力学(Ab-initio molecular dynamics、AIMD)は、物質の物性を研究するために分子の物理運動をシミュレートする強力なツールである。
近い将来の量子コンピュータは、この課題を緩和するための解決策として多くの注目を集めている。
提案手法に基づいて,資源効率の向上を目的とした古典的シャドウ手法を提案する。
論文 参考訳(メタデータ) (2024-06-27T00:06:23Z) - Quantum Extreme Learning of molecular potential energy surfaces and force fields [5.13730975608994]
量子ニューラルネットワークは、分子系のポテンシャルエネルギー表面と力場を学習するために用いられる。
この特定の教師付き学習ルーチンは、古典的コンピュータ上で実行される単純な線形回帰からなるリソース効率のトレーニングを可能にする。
我々は、任意の次元の分子を研究するために使用でき、NISQデバイスで即時使用するために最適化された設定をテストした。
他の教師付き学習ルーチンと比較して、提案されたセットアップは最小限の量子リソースを必要とするため、量子プラットフォーム上で直接実装することが可能である。
論文 参考訳(メタデータ) (2024-06-20T18:00:01Z) - Programmable Simulations of Molecules and Materials with Reconfigurable
Quantum Processors [0.3320294284424914]
モデルスピンハミルトニアンで表現できる強い相関量子系のシミュレーションフレームワークを導入する。
提案手法は、再構成可能な量子ビットアーキテクチャを利用して、リアルタイムなダイナミクスをプログラム的にシミュレートする。
本稿では, この方法を用いて, 多核遷移金属触媒と2次元磁性材料のキー特性を計算する方法について述べる。
論文 参考訳(メタデータ) (2023-12-04T19:00:01Z) - Sampling a rare protein transition with a hybrid classical-quantum
computing algorithm [0.0]
分子動力学(MD)によるマクロ分子の自発的構造再構成のシミュレーションは注目すべき課題である。
従来のスーパーコンピュータは最大10万ユーロの時間間隔にアクセスできるが、多くの重要なイベントは指数関数的に長い時間スケールで発生する。
我々は、機械学習(ML)と量子コンピューティングを組み合わせたパスサンプリングパラダイムを用いてこの問題に対処する。
論文 参考訳(メタデータ) (2023-11-27T14:58:29Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
QH9と呼ばれる新しい量子ハミルトンデータセットを生成し、999または2998の分子動力学軌道に対して正確なハミルトン行列を提供する。
現在の機械学習モデルでは、任意の分子に対するハミルトン行列を予測する能力がある。
論文 参考訳(メタデータ) (2023-06-15T23:39:07Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
機械学習(ML)ベースのポテンシャルは、量子力学(QM)計算の忠実なエミュレーションを、計算コストを大幅に削減することを目的としている。
アクティブラーニング(AL)の原理を用いたデータセット構築のための高度に自動化されたアプローチを提案する。
アルミニウム(ANI-Al)のMLポテンシャル構築によるこのアプローチの実証
転写性を示すために、1.3M原子衝撃シミュレーションを行い、非平衡力学から採取した局所原子環境上でのDFT計算とANI-Al予測がよく一致することを示す。
論文 参考訳(メタデータ) (2020-03-10T19:06:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。