論文の概要: Uncovering Safety Risks in Open-source LLMs through Concept Activation Vector
- arxiv url: http://arxiv.org/abs/2404.12038v1
- Date: Thu, 18 Apr 2024 09:46:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 12:51:17.602830
- Title: Uncovering Safety Risks in Open-source LLMs through Concept Activation Vector
- Title(参考訳): コンセプトアクティベーションベクトルによるオープンソースLCMの安全性リスクの解明
- Authors: Zhihao Xu, Ruixuan Huang, Xiting Wang, Fangzhao Wu, Jing Yao, Xing Xie,
- Abstract要約: 本稿では,概念に基づくモデル記述を用いたLLM攻撃手法を提案する。
安全概念アクティベーションベクトル(SCAV)をLLMのアクティベーション空間から抽出し、適切に整列されたLCMに対する効率的な攻撃を可能にする。
このことは、LLMが徹底的な安全調整をした後でも、社会に公開時に潜在的リスクを及ぼす可能性があることを示唆している。
- 参考スコア(独自算出の注目度): 62.23945242640024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current open-source large language models (LLMs) are often undergone careful safety alignment before public release. Some attack methods have also been proposed that help check for safety vulnerabilities in LLMs to ensure alignment robustness. However, many of these methods have moderate attack success rates. Even when successful, the harmfulness of their outputs cannot be guaranteed, leading to suspicions that these methods have not accurately identified the safety vulnerabilities of LLMs. In this paper, we introduce a LLM attack method utilizing concept-based model explanation, where we extract safety concept activation vectors (SCAVs) from LLMs' activation space, enabling efficient attacks on well-aligned LLMs like LLaMA-2, achieving near 100% attack success rate as if LLMs are completely unaligned. This suggests that LLMs, even after thorough safety alignment, could still pose potential risks to society upon public release. To evaluate the harmfulness of outputs resulting with various attack methods, we propose a comprehensive evaluation method that reduces the potential inaccuracies of existing evaluations, and further validate that our method causes more harmful content. Additionally, we discover that the SCAVs show some transferability across different open-source LLMs.
- Abstract(参考訳): 現在のオープンソースの大規模言語モデル(LLM)は、パブリックリリース前に慎重に安全アライメントされることが多い。
また、LCMの安全性上の脆弱性のチェックとアライメントの堅牢性を確保するための攻撃方法も提案されている。
しかし、これらの手法の多くは中程度の攻撃成功率を有する。
成功しても、そのアウトプットの有害性は保証できないため、これらの手法がLSMの安全性の脆弱性を正確に特定していないという疑いが生じる。
本稿では, LLM のアクティベーション空間から安全概念アクティベーションベクトル (SCAV) を抽出し, LLaMA-2 のようなよく整合した LLM に対する効率的な攻撃を可能にし, LLM が完全に不整合であるかのように, 100% 近い攻撃成功率を達成する, 概念に基づくモデル説明を利用した LLM 攻撃手法を提案する。
このことは、LLMが徹底的な安全調整をした後でも、社会に公開時に潜在的リスクを及ぼす可能性があることを示唆している。
各種攻撃手法によるアウトプットの有害性を評価するため,既存の評価の潜在的な不正確さを低減し,さらに有害な内容を引き起こすことを検証した総合評価手法を提案する。
さらに、SCAVは、異なるオープンソースLLM間での転送可能性を示す。
関連論文リスト
- Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models [8.024771725860127]
大きな言語モデル(LLM)は、安全メカニズムをバイパスするジェイルブレイク攻撃に対して脆弱なままである。
我々は, LLMの安全性ポリシーの活性化を前提として, 計算資源を占有する新しい拡張性のあるジェイルブレイク攻撃を導入する。
論文 参考訳(メタデータ) (2024-10-05T15:10:01Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Emerging Safety Attack and Defense in Federated Instruction Tuning of Large Language Models [51.85781332922943]
フェデレートラーニング(FL)は、複数のパーティが直接データ共有を必要とせずに、共同で大きな言語モデル(LLM)を微調整することを可能にする。
我々は、シンプルでステルス的で効果的な安全攻撃手法を提案することにより、FedITにおける安全性アライメントの脆弱性を初めて明らかにした。
論文 参考訳(メタデータ) (2024-06-15T13:24:22Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
大規模言語モデル(LLM)は敵の脅威に対して脆弱である。
本稿では, LLM へのホワイトボックスアクセスを前提とした, 革新的な防御戦略を提案する。
そこで本研究では,アタックプロンプト分類のための残差ストリームの固有なアクティベーションパターンを解析するための新しい手法を適用した。
論文 参考訳(メタデータ) (2024-06-05T13:06:33Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
レッドチーム、あるいは有害な応答を誘発するプロンプトの特定は、大きな言語モデルの安全なデプロイを保証するための重要なステップである。
新規性と多様性を優先する明確な規則化であっても、既存のアプローチはモード崩壊または効果的な攻撃を発生させることができないことを示す。
我々は,GFlowNetの微調整と二次平滑化フェーズを用いて,多種多様な効果的な攻撃プロンプトを生成するために攻撃モデルを訓練することを提案する。
論文 参考訳(メタデータ) (2024-05-28T19:16:17Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - Goal-Oriented Prompt Attack and Safety Evaluation for LLMs [43.93613764464993]
高品質なプロンプト攻撃サンプルを構築するパイプラインと、CPADと呼ばれる中国のプロンプト攻撃データセットを導入する。
我々のプロンプトは、慎重に設計されたいくつかのプロンプトアタックテンプレートで、予期せぬ出力を生成するためにLSMを誘導することを目的としている。
GPT-3.5に対する攻撃成功率は70%程度であった。
論文 参考訳(メタデータ) (2023-09-21T07:07:49Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。