Evolutionary Multi-Objective Optimisation for Fairness-Aware Self Adjusting Memory Classifiers in Data Streams
- URL: http://arxiv.org/abs/2404.12076v1
- Date: Thu, 18 Apr 2024 10:59:04 GMT
- Title: Evolutionary Multi-Objective Optimisation for Fairness-Aware Self Adjusting Memory Classifiers in Data Streams
- Authors: Pivithuru Thejan Amarasinghe, Diem Pham, Binh Tran, Su Nguyen, Yuan Sun, Damminda Alahakoon,
- Abstract summary: We introduce a novel approach to enhance fairness in machine learning algorithms applied to data stream classification.
The proposed approach integrates the strengths of the self-adjusting memory K-Nearest-Neighbour algorithm with evolutionary multi-objective optimisation.
We show that the proposed approach maintains competitive accuracy and significantly reduces discrimination.
- Score: 2.8366371519410887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel approach, evolutionary multi-objective optimisation for fairness-aware self-adjusting memory classifiers, designed to enhance fairness in machine learning algorithms applied to data stream classification. With the growing concern over discrimination in algorithmic decision-making, particularly in dynamic data stream environments, there is a need for methods that ensure fair treatment of individuals across sensitive attributes like race or gender. The proposed approach addresses this challenge by integrating the strengths of the self-adjusting memory K-Nearest-Neighbour algorithm with evolutionary multi-objective optimisation. This combination allows the new approach to efficiently manage concept drift in streaming data and leverage the flexibility of evolutionary multi-objective optimisation to maximise accuracy and minimise discrimination simultaneously. We demonstrate the effectiveness of the proposed approach through extensive experiments on various datasets, comparing its performance against several baseline methods in terms of accuracy and fairness metrics. Our results show that the proposed approach maintains competitive accuracy and significantly reduces discrimination, highlighting its potential as a robust solution for fairness-aware data stream classification. Further analyses also confirm the effectiveness of the strategies to trigger evolutionary multi-objective optimisation and adapt classifiers in the proposed approach.
Related papers
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
This paper focuses on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO)
In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation.
For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Tuning, and introduces a radius ( R ) concept in deterministic crowding.
arXiv Detail & Related papers (2024-11-12T15:18:48Z) - AdapFair: Ensuring Continuous Fairness for Machine Learning Operations [7.909259406397651]
We present a debiasing framework designed to find an optimal fair transformation of input data.
We leverage the normalizing flows to enable efficient, information-preserving data transformation.
We introduce an efficient optimization algorithm with closed-formed gradient computations.
arXiv Detail & Related papers (2024-09-23T15:01:47Z) - A constrained optimization approach to improve robustness of neural networks [1.2338729811609355]
We present a novel nonlinear programming-based approach to fine-tune pre-trained neural networks to improve robustness against adversarial attacks while maintaining accuracy on clean data.
arXiv Detail & Related papers (2024-09-18T18:37:14Z) - Computationally Efficient Optimisation of Elbow-Type Draft Tube Using
Neural Network Surrogates [0.0]
This study aims to provide a comprehensive assessment of single-objective and multi-objective optimisation algorithms for the design of an elbow-type draft tube.
The proposed workflow leverages deep neural network surrogates trained on data obtained from numerical simulations.
arXiv Detail & Related papers (2024-01-14T14:05:26Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - A Federated Data-Driven Evolutionary Algorithm for Expensive
Multi/Many-objective Optimization [11.92436948211501]
This paper proposes a federated data-driven evolutionary multi-objective/many-objective optimization algorithm.
We leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate.
A new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values.
arXiv Detail & Related papers (2021-06-22T22:33:24Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
We propose a reinforcement learning based selective pseudo-labeling method for semi-supervised domain adaptation.
We develop a deep Q-learning model to select both accurate and representative pseudo-labeled instances.
Our proposed method is evaluated on several benchmark datasets for SSDA, and demonstrates superior performance to all the comparison methods.
arXiv Detail & Related papers (2020-12-07T03:37:38Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.