Slot: Provenance-Driven APT Detection through Graph Reinforcement Learning
- URL: http://arxiv.org/abs/2410.17910v1
- Date: Wed, 23 Oct 2024 14:28:32 GMT
- Title: Slot: Provenance-Driven APT Detection through Graph Reinforcement Learning
- Authors: Wei Qiao, Yebo Feng, Teng Li, Zijian Zhang, Zhengzi Xu, Zhuo Ma, Yulong Shen, JianFeng Ma, Yang Liu,
- Abstract summary: Advanced Persistent Threats (APTs) represent sophisticated cyberattacks characterized by their ability to remain undetected for extended periods.
We propose Slot, an advanced APT detection approach based on provenance graphs and graph reinforcement learning.
We show Slot's outstanding accuracy, efficiency, adaptability, and robustness in APT detection, with most metrics surpassing state-of-the-art methods.
- Score: 26.403625710805418
- License:
- Abstract: Advanced Persistent Threats (APTs) represent sophisticated cyberattacks characterized by their ability to remain undetected within the victim system for extended periods, aiming to exfiltrate sensitive data or disrupt operations. Existing detection approaches often struggle to effectively identify these complex threats, construct the attack chain for defense facilitation, or resist adversarial attacks. To overcome these challenges, we propose Slot, an advanced APT detection approach based on provenance graphs and graph reinforcement learning. Slot excels in uncovering multi-level hidden relationships, such as causal, contextual, and indirect connections, among system behaviors through provenance graph mining. By pioneering the integration of graph reinforcement learning, Slot dynamically adapts to new user activities and evolving attack strategies, enhancing its resilience against adversarial attacks. Additionally, Slot automatically constructs the attack chain according to detected attacks with clustering algorithms, providing precise identification of attack paths and facilitating the development of defense strategies. Evaluations with real-world datasets demonstrate Slot's outstanding accuracy, efficiency, adaptability, and robustness in APT detection, with most metrics surpassing state-of-the-art methods. Additionally, case studies conducted to assess Slot's effectiveness in supporting APT defense further establish it as a practical and reliable tool for cybersecurity protection.
Related papers
- Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks [0.0]
Adversarial attacks pose significant threats to the robustness of deep learning models in image classification.
This paper explores and refines defense mechanisms against these attacks to enhance the resilience of neural networks.
arXiv Detail & Related papers (2024-08-20T02:00:02Z) - Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors [0.0]
An adaptive attack is one where the attacker is aware of the defenses and adapts their strategy accordingly.
Our proposed method leverages adversarial training to reinforce the ability to detect attacks, without compromising clean accuracy.
Experimental evaluations on the CIFAR-10 and SVHN datasets demonstrate that our proposed algorithm significantly improves a detector's ability to accurately identify adaptive adversarial attacks.
arXiv Detail & Related papers (2024-04-18T12:13:09Z) - LTRDetector: Exploring Long-Term Relationship for Advanced Persistent Threats Detection [20.360010908574303]
Advanced Persistent Threat (APT) is challenging to detect due to prolonged duration, infrequent occurrence, and adept concealment techniques.
Existing approaches primarily concentrate on the observable traits of attack behaviors, neglecting the intricate relationships formed throughout the persistent attack lifecycle.
We present an innovative APT detection framework named LTRDetector, implementing an end-to-end holistic operation.
arXiv Detail & Related papers (2024-04-04T02:30:51Z) - Combating Advanced Persistent Threats: Challenges and Solutions [20.81151411772311]
The rise of advanced persistent threats (APTs) has marked a significant cybersecurity challenge.
Provenance graph-based kernel-level auditing has emerged as a promising approach to enhance visibility and traceability.
This paper proposes an efficient and robust APT defense scheme leveraging provenance graphs, including a network-level distributed audit model for cost-effective lateral attack reconstruction.
arXiv Detail & Related papers (2023-09-18T05:46:11Z) - Towards Adversarial Realism and Robust Learning for IoT Intrusion
Detection and Classification [0.0]
The Internet of Things (IoT) faces tremendous security challenges.
The increasing threat posed by adversarial attacks restates the need for reliable defense strategies.
This work describes the types of constraints required for an adversarial cyber-attack example to be realistic.
arXiv Detail & Related papers (2023-01-30T18:00:28Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
More and more malicious attackers attempt to launch adversarial attacks at automatic speaker verification (ASV) systems.
We propose a standard and attack-agnostic method based on cascaded self-supervised learning models to purify the adversarial perturbations.
Experimental results demonstrate that the proposed method achieves effective defense performance and can successfully counter adversarial attacks.
arXiv Detail & Related papers (2021-02-14T01:56:43Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.