論文の概要: mABC: multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-services architecture
- arxiv url: http://arxiv.org/abs/2404.12135v1
- Date: Thu, 18 Apr 2024 12:35:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 12:31:46.733432
- Title: mABC: multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-services architecture
- Title(参考訳): mABC: マイクロサービスアーキテクチャにおける根本原因分析のためのマルチエージェントブロックチェーン-インスパイアされたコラボレーション
- Authors: Wei Zhang, Hongcheng Guo, Jian Yang, Yi Zhang, Chaoran Yan, Zhoujin Tian, Hangyuan Ji, Zhoujun Li, Tongliang Li, Tieqiao Zheng, Chao Chen, Yi Liang, Xu Shi, Liangfan Zheng, Bo Zhang,
- Abstract要約: クラウドネイティブなテクノロジにおけるマイクロサービスアーキテクチャの複雑さは、システムの安定性と効率性を維持する上での課題をもたらします。
マイクロサービスアーキテクチャ(mABC)における根本原因分析のための先駆的フレームワークであるマルチエージェント型コラボレーションを提案する。
mABCは、マイクロサービスアーキテクチャにおける包括的な自動化された根本原因分析と解決を提供し、既存のベースラインと比較してAIOpsドメインの大幅な改善を実現している。
- 参考スコア(独自算出の注目度): 34.01678746800522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The escalating complexity of micro-services architecture in cloud-native technologies poses significant challenges for maintaining system stability and efficiency. To conduct root cause analysis (RCA) and resolution of alert events, we propose a pioneering framework, multi-Agent Blockchain-inspired Collaboration for root cause analysis in micro-services architecture (mABC), to revolutionize the AI for IT operations (AIOps) domain, where multiple agents based on the powerful large language models (LLMs) perform blockchain-inspired voting to reach a final agreement following a standardized process for processing tasks and queries provided by Agent Workflow. Specifically, seven specialized agents derived from Agent Workflow each provide valuable insights towards root cause analysis based on their expertise and the intrinsic software knowledge of LLMs collaborating within a decentralized chain. To avoid potential instability issues in LLMs and fully leverage the transparent and egalitarian advantages inherent in a decentralized structure, mABC adopts a decision-making process inspired by blockchain governance principles while considering the contribution index and expertise index of each agent. Experimental results on the public benchmark AIOps challenge dataset and our created train-ticket dataset demonstrate superior performance in accurately identifying root causes and formulating effective solutions, compared to previous strong baselines. The ablation study further highlights the significance of each component within mABC, with Agent Workflow, multi-agent, and blockchain-inspired voting being crucial for achieving optimal performance. mABC offers a comprehensive automated root cause analysis and resolution in micro-services architecture and achieves a significant improvement in the AIOps domain compared to existing baselines
- Abstract(参考訳): クラウドネイティブなテクノロジにおけるマイクロサービスアーキテクチャのエスカレートする複雑性は、システムの安定性と効率性を維持する上で大きな課題となる。
根本原因分析(RCA)と警告イベントの解決を目的として,マイクロサービスアーキテクチャ(mABC)における根本原因分析のための先駆的フレームワークであるマルチエージェントブロックチェーンによるコラボレーションを提案し,IT運用(AIOps)ドメインに革命をもたらす。
具体的には、Agens Workflowから派生した7つの専門エージェントが、それぞれの専門知識と分散チェーン内で協調するLLMの本質的なソフトウェア知識に基づいて、根本原因分析に関する貴重な洞察を提供する。
LLMの潜在的な不安定性の問題を避け、分散構造に固有の透明性と平等的優位性を完全に活用するために、mABCは、各エージェントの貢献指標と専門指標を考慮して、ブロックチェーンガバナンス原則にインスパイアされた意思決定プロセスを採用する。
公開ベンチマークのAIOpsチャレンジデータセットと作成したトレインチケットデータセットの実験結果から,根本原因を正確に同定し,有効なソリューションを定式化する上で,従来の強力なベースラインと比較して優れたパフォーマンスを示した。
アブレーション調査は、mABC内の各コンポーネントの重要性をさらに強調している。最適なパフォーマンスを達成する上では、Agent Workflow、マルチエージェント、ブロックチェーンにインスパイアされた投票が不可欠である。
mABCは、マイクロサービスアーキテクチャにおける包括的な自動化された根本原因分析と解決を提供し、既存のベースラインと比較してAIOpsドメインの大幅な改善を実現している。
関連論文リスト
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
LLM-Agent-UMF(LLM-Agent-UMF)に基づく新しいエージェント統一モデリングフレームワークを提案する。
我々のフレームワークはLLMエージェントの異なるコンポーネントを区別し、LLMとツールを新しい要素であるコアエージェントから分離する。
我々は,13の最先端エージェントに適用し,それらの機能との整合性を実証することによって,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2024-09-17T17:54:17Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - CHASE: A Causal Heterogeneous Graph based Framework for Root Cause Analysis in Multimodal Microservice Systems [22.00860661894853]
マルチモーダルデータを持つマイクロサービスシステムにおける根本原因解析,すなわちCHASEのための因数不均一なgraAph baSed framEworkを提案する。
CHASEは、因果関係の流れを表すハイパーエッジを持つ構築されたハイパーグラフから学習し、根本原因の局在を実行する。
論文 参考訳(メタデータ) (2024-06-28T07:46:51Z) - A Unified Debugging Approach via LLM-Based Multi-Agent Synergy [39.11825182386288]
FixAgentはマルチエージェントのシナジーによる統合デバッグのためのエンドツーエンドフレームワークである。
1.25$times$ 2.56$times$レポレベルのベンチマークであるDefects4Jのバグを修正した。
論文 参考訳(メタデータ) (2024-04-26T04:55:35Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - PyRCA: A Library for Metric-based Root Cause Analysis [66.72542200701807]
PyRCAは、AIOps(AIOps)のためのRoot Cause Analysis(RCA)のオープンソースの機械学習ライブラリである。
複雑なメトリクス因果依存性を明らかにし、インシデントの根本原因を自動的に特定する、包括的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-06-20T09:55:10Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。