Long-lived oscillations of metastable states in neutral atom systems
- URL: http://arxiv.org/abs/2404.12371v2
- Date: Wed, 09 Oct 2024 04:30:03 GMT
- Title: Long-lived oscillations of metastable states in neutral atom systems
- Authors: Siva Darbha, Milan Kornjača, Fangli Liu, Jan Balewski, Mark R. Hirsbrunner, Pedro L. S. Lopes, Sheng-Tao Wang, Roel Van Beeumen, Katherine Klymko, Daan Camps,
- Abstract summary: We study long-lived oscillations of metastable and ground states in 1D antiferromagnetic neutral atom chains with long-range Rydberg interactions.
We identify novel spectral signatures of quasiparticle oscillations distinct to antiferromagnetic neutral atom systems.
We evaluate the experimental accessibility of our proposed setup on current neutral-atom platforms.
- Score: 0.14980193397844668
- License:
- Abstract: Metastable states arise in a range of quantum systems and can be observed in various dynamical scenarios, including decay, bubble nucleation, and long-lived oscillations. The phenomenology of metastable states has been examined in quantum many-body systems, notably in 1D ferromagnetic Ising spin systems and superfluids. In this paper, we study long-lived oscillations of metastable and ground states in 1D antiferromagnetic neutral atom chains with long-range Rydberg interactions. We use a staggered local detuning field to achieve confinement. Using theoretical and numerical models, we identify novel spectral signatures of quasiparticle oscillations distinct to antiferromagnetic neutral atom systems and interpret them using a classical energy model of short-range meson repulsion. Finally, we evaluate the experimental accessibility of our proposed setup on current neutral-atom platforms and discuss experimental feasibility and constraints.
Related papers
- False vacuum decay and nucleation dynamics in neutral atom systems [0.14980193397844668]
We study nucleation dynamics in 1D antiferromagnetic neutral atom chains with Rydberg interactions.
We propose experimental protocols to prepare the required states and perform quenches on near-term neutral atom quantum simulators.
arXiv Detail & Related papers (2024-04-18T17:39:47Z) - Observation of magnon bound states in the long-range, anisotropic Heisenberg model [0.0]
Floquet engineering is a versatile tool for realizing novel Hamiltonians.
We experimentally realize a long-ranged, anisotropic Heisenberg model with tunable interactions in a trapped ion quantum simulator.
arXiv Detail & Related papers (2022-12-07T19:00:22Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics [0.0]
We review the recent developments and the current status in the field of quantum-gas cavity QED.
Composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Generation and dynamics of entangled fermion-photon-phonon states in
nanocavities [0.0]
We develop the analytic theory describing the formation and evolution of entangled quantum states for a fermionic quantum emitter coupled to a quantized electromagnetic field.
The theory is applicable to a broad range of cavity quantum optomechanics problems and emerging research on plasmonic nanocavities coupled to single molecules and other quantum emitters.
arXiv Detail & Related papers (2020-07-04T18:41:25Z) - Exploring dynamical phase transitions with cold atoms in an optical
cavity [0.0]
We use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model.
Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters.
arXiv Detail & Related papers (2019-10-01T14:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.