Observation of metastability in open quantum dynamics of a solid-state system
- URL: http://arxiv.org/abs/2412.21026v1
- Date: Mon, 30 Dec 2024 15:52:04 GMT
- Title: Observation of metastability in open quantum dynamics of a solid-state system
- Authors: Jun-Xiang Zhang, Yuan-De Jin, Chu-Dan Qiu, Wen-Long Ma, Gang-Qin Liu,
- Abstract summary: We experimentally observe metastability in the discrete-time evolution of a single nuclear spin in diamond.
Our results represent a concrete step towards uncovering non-equilibrium physics in open quantum dynamics.
- Score: 0.16777183511743465
- License:
- Abstract: Metastability is a ubiquitous phenomenon in non-equilibrium physics and classical stochastic dynamics.It arises when the system dynamics settles in long-lived states before eventually decaying to true equilibria. Remarkably, it has been predicted that quantum metastability can also occur in continuous-time and discrete-time open quantum dynamics. However, the direct experimental observation of metastability in open quantum systems has remained elusive. Here, we experimentally observe metastability in the discrete-time evolution of a single nuclear spin in diamond, realized by sequential Ramsey interferometry measurements of a nearby nitrogen-vacancy electron spin. We demonstrate that the metastable polarization of the nuclear spin emerges at around 60,000-250,000 sequential measurements, enabling high-fidelity single-shot readout of the nuclear spin under a small magnetic field of 108.4 gauss. An ultra-long spin relaxation time of more than 10 s has been observed at room temperature. By further increasing the measurement number, the nuclear spin eventually relaxes into the maximally mixed state. Our results represent a concrete step towards uncovering non-equilibrium physics in open quantum dynamics, which is practically relevant for the utilization of metastable information in various quantum information processing tasks, such as accurate quantum operations, quantum channel discrimination and quantum error correction.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Emergence and Dynamical Stability of Charge Time-Crystal in a
Current-Carrying Quantum Dot Simulator [0.0]
We show that time-crystallinity can be measured directly in the charge-current from a spin-less Hubbard ladder.
We demonstrate that one can dynamically tune the system out and then back into the time-crystal phase, proving its robustness against external forcings.
arXiv Detail & Related papers (2022-05-13T03:48:45Z) - The Transition from Quantum to Classical in weak measurements and
reconstruction of Quantum Correlation [0.0]
We show that the relation between the readout signal of a single electron spin and the quantum dynamics of the single nuclear spin is given by a parameter related to the measurement strength.
We prove the validity of our approach by measuring violations of the Leggett-Garg inequality.
arXiv Detail & Related papers (2021-04-09T17:46:55Z) - Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics [0.0]
We review the recent developments and the current status in the field of quantum-gas cavity QED.
Composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.