False vacuum decay and nucleation dynamics in neutral atom systems
- URL: http://arxiv.org/abs/2404.12360v2
- Date: Wed, 09 Oct 2024 04:21:54 GMT
- Title: False vacuum decay and nucleation dynamics in neutral atom systems
- Authors: Siva Darbha, Milan Kornjača, Fangli Liu, Jan Balewski, Mark R. Hirsbrunner, Pedro L. S. Lopes, Sheng-Tao Wang, Roel Van Beeumen, Daan Camps, Katherine Klymko,
- Abstract summary: We study nucleation dynamics in 1D antiferromagnetic neutral atom chains with Rydberg interactions.
We propose experimental protocols to prepare the required states and perform quenches on near-term neutral atom quantum simulators.
- Score: 0.14980193397844668
- License:
- Abstract: Metastable states of quantum many-body systems with confinement offer a means to simulate false vacuum phenomenology, including non-equilibrium dynamical processes like decay by nucleation, in truncated limits. Recent work has examined the decay process in 1D ferromagnetic Ising spins and superfluids. In this paper, we study nucleation dynamics in 1D antiferromagnetic neutral atom chains with Rydberg interactions, using both numerical simulations and analytic modeling. We apply a staggered local detuning field to generate the metastable and ground states. Our efforts focus on two dynamical regimes: decay and annealing. In the first, we corroborate the phenomenological decay rate scaling and determine the associated parameter range for the decay process; in the second, we uncover and elucidate a procedure to anneal the metastable state from the initial to the final system, with intermediate nucleation events. We further propose experimental protocols to prepare the required states and perform quenches on near-term neutral atom quantum simulators, examining the experimental feasibility of our proposed setup and parameter regime.
Related papers
- Long-lived oscillations of metastable states in neutral atom systems [0.14980193397844668]
We study long-lived oscillations of metastable and ground states in 1D antiferromagnetic neutral atom chains with long-range Rydberg interactions.
We identify novel spectral signatures of quasiparticle oscillations distinct to antiferromagnetic neutral atom systems.
We evaluate the experimental accessibility of our proposed setup on current neutral-atom platforms.
arXiv Detail & Related papers (2024-04-18T17:52:14Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Proposal of ensemble qubits with two-atom decay [2.5900317472963152]
We propose and analyze a novel approach to implement ensemble qubits.
The required anharmonicity is provided by a simultaneous decay of two atoms.
For an atomic ensemble, the two-atom decay generates and stabilizes a 2D quantum manifold.
arXiv Detail & Related papers (2023-02-14T01:51:50Z) - Decoherence of Nuclear Spins in the Proximity of Nitrogen Vacancy
Centers in Diamond [0.0]
Nuclear spins in solids are promising platforms for quantum information processing.
We study the nuclear decoherence processes in the vicinity of the nitrogen-vacancy (NV) center in diamond.
arXiv Detail & Related papers (2023-02-07T04:58:38Z) - Reaction-diffusive dynamics of number-conserving dissipative quantum
state preparation [0.0]
We show the emergence of a diffusive regime for the particle and hole density modes at intermediate length- and time-scales.
We also identify processes that limit the diffusive behavior of this mode at the longest length- and time-scales.
Strikingly, we find that these processes lead to a reaction-diffusion dynamics governed by the Fisher-Kolmogorov-Petrovsky-Piskunov equation.
arXiv Detail & Related papers (2023-01-12T19:11:04Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Time-Dependent Self Consistent Harmonic Approximation: Anharmonic
nuclear quantum dynamics and time correlation functions [0.0]
We derive an approximate theory for the quantum time evolution of lattice vibrations at finite temperature.
We apply perturbation theory around the static SCHA solution and derive an algorithm to compute efficiently quantum dynamical response functions.
arXiv Detail & Related papers (2020-11-30T16:56:50Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.