論文の概要: Beyond development: Challenges in deploying machine learning models for structural engineering applications
- arxiv url: http://arxiv.org/abs/2404.12544v1
- Date: Thu, 18 Apr 2024 23:40:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 16:34:43.293982
- Title: Beyond development: Challenges in deploying machine learning models for structural engineering applications
- Title(参考訳): 開発を超えて - 構造工学アプリケーションのための機械学習モデルをデプロイする上での課題
- Authors: Mohsen Zaker Esteghamati, Brennan Bean, Henry V. Burton, M. Z. Naser,
- Abstract要約: 本稿では,2つの具体例を通して,デプロイメントに適した機械学習モデルを開発する上での課題について述べる。
様々な落とし穴の中で、提示された議論は、モデルの過度な適合と過小評価、トレーニングデータ代表性、変数の欠落バイアス、およびクロスバリデーションに焦点を当てている。
その結果、適応サンプリングによる厳密なモデル検証手法の実装の重要性、注意深い物理インフォームド特徴選択、モデルの複雑さと一般化可能性の両方について考察した。
- 参考スコア(独自算出の注目度): 2.6415688445750383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML)-based solutions are rapidly changing the landscape of many fields, including structural engineering. Despite their promising performance, these approaches are usually only demonstrated as proof-of-concept in structural engineering, and are rarely deployed for real-world applications. This paper aims to illustrate the challenges of developing ML models suitable for deployment through two illustrative examples. Among various pitfalls, the presented discussion focuses on model overfitting and underspecification, training data representativeness, variable omission bias, and cross-validation. The results highlight the importance of implementing rigorous model validation techniques through adaptive sampling, careful physics-informed feature selection, and considerations of both model complexity and generalizability.
- Abstract(参考訳): 機械学習(ML)ベースのソリューションは、構造工学を含む多くの分野のランドスケープを急速に変化させています。
期待できる性能にもかかわらず、これらのアプローチは通常、構造工学における概念実証としてのみ実証され、現実世界のアプリケーションにデプロイされることは滅多にない。
本稿では,2つの具体例を通して,デプロイメントに適したMLモデルを開発する上での課題について述べる。
様々な落とし穴の中で、提示された議論は、モデルの過度な適合と過小評価、トレーニングデータ代表性、変数の欠落バイアス、およびクロスバリデーションに焦点を当てている。
その結果,適応サンプリングによる厳密なモデル検証手法の実装の重要性,物理インフォームド特徴選択の注意,モデルの複雑さと一般化可能性の両面について考察した。
関連論文リスト
- Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
本報告では, モデルロバスト性, 性能を向上させるため, 強化したトレーニング手法を提案する。
機械学習モデルの弱点を特定し、適切な拡張を選択し、効果的なトレーニング戦略を考案する包括的フレームワークを提案する。
実験結果は,オープンソースオブジェクトの検出とセマンティックセグメンテーションモデルとデータセットに対する平均平均精度(mAP)や平均距離(mIoU)といった一般的な測定値によって測定されるモデル性能の改善を示す。
論文 参考訳(メタデータ) (2024-08-30T14:15:48Z) - Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning [37.745896674964186]
マルチタスク学習(MTL)は,複数のタスクを同時に学習することで,複数のタスクにおけるモデルの一般化性能を向上させることを目的としている。
連続学習(CL)は、以前取得した知識を忘れずに、時間とともに新しい逐次到着タスクに適応する。
MTL設定におけるモデルの性能に及ぼす各種システムパラメータの影響を理論的に記述する。
その結果,バッファサイズとモデルキャパシティがCLセットアップの記憶率に及ぼす影響を明らかにし,最先端のCL手法のいくつかに光を当てるのに役立つことがわかった。
論文 参考訳(メタデータ) (2024-08-29T23:22:40Z) - Mining Frequent Structures in Conceptual Models [2.841785306638839]
本稿では,概念モデリング言語における頻繁な構造発見問題に対する一般的なアプローチを提案する。
我々は,頻繁な部分グラフマイニングアルゴリズムとグラフ操作手法を組み合わせる。
主な目的は、言語エンジニアのためのサポート施設を提供することである。
論文 参考訳(メタデータ) (2024-06-11T10:24:02Z) - What matters when building vision-language models? [52.8539131958858]
我々は、80億のパラメータを持つ効率的な基礎的視覚言語モデルであるIdefics2を開発した。
Idefics2は、様々なマルチモーダルベンチマークで、そのサイズカテゴリ内で最先端のパフォーマンスを達成する。
トレーニング用に作成されたデータセットとともに、モデル(ベース、指示、チャット)をリリースします。
論文 参考訳(メタデータ) (2024-05-03T17:00:00Z) - OtterHD: A High-Resolution Multi-modality Model [57.16481886807386]
OtterHD-8Bは、高解像度の視覚入力を粒度精度で解釈するために設計された革新的なマルチモーダルモデルである。
本研究は,大規模マルチモーダルモデルにおける柔軟性と高分解能入力能力の重要な役割を明らかにする。
論文 参考訳(メタデータ) (2023-11-07T18:59:58Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
本稿では,拡散モデルのサンプリング軌跡と従来の物理法に基づく最適化軌跡との整合性を示す学習フレームワークを提案する。
提案手法では,高コストプリプロセッシングや外部サロゲートモデル,ラベル付きデータの追加を必要とせずに,実用的で高性能な設計を2段階で生成することができる。
この結果から, TAは分布内構成における最先端の深層生成モデルより優れ, 推論計算コストを半減することがわかった。
論文 参考訳(メタデータ) (2023-05-29T09:16:07Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Problem-fluent models for complex decision-making in autonomous
materials research [0.0]
機械学習手法とモデルの結合と、より問題対応のモデリングを強調します。
我々は,多数の自律材料プラットフォームが採用する閉ループ設計のための一般ベイズ的枠組みを概観する。
論文 参考訳(メタデータ) (2021-03-13T19:23:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。