論文の概要: Problem-fluent models for complex decision-making in autonomous
materials research
- arxiv url: http://arxiv.org/abs/2103.07776v1
- Date: Sat, 13 Mar 2021 19:23:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 14:18:31.884969
- Title: Problem-fluent models for complex decision-making in autonomous
materials research
- Title(参考訳): 自律材料研究における複雑意思決定のための問題拡散モデル
- Authors: Soojung Baek, Kristofer G. Reyes
- Abstract要約: 機械学習手法とモデルの結合と、より問題対応のモデリングを強調します。
我々は,多数の自律材料プラットフォームが採用する閉ループ設計のための一般ベイズ的枠組みを概観する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We review our recent work in the area of autonomous materials research,
highlighting the coupling of machine learning methods and models and more
problem-aware modeling. We review the general Bayesian framework for
closed-loop design employed by many autonomous materials platforms. We then
provide examples of our work on such platforms. We finally review our
approaches to extend current statistical and ML models to better reflect
problem-specific structure including the use of physics-based models and
incorporation of operational considerations into the decision-making procedure.
- Abstract(参考訳): 自律材料研究の分野における最近の研究成果を概観し、機械学習手法とモデルとの結合と、より問題対応のモデリングを強調した。
我々は,多数の自律材料プラットフォームが採用する閉ループ設計のための一般ベイズ的枠組みを概観する。
その後、そのようなプラットフォームでの作業例を提供します。
最後に,現在の統計モデルとmlモデルを拡張し,物理モデルの利用や運用上の考慮事項を意思決定手順に組み込むなど,問題固有の構造をよりよく反映する手法について検討する。
関連論文リスト
- Configurable Foundation Models: Building LLMs from a Modular Perspective [115.63847606634268]
LLMを多数の機能モジュールに分解する傾向が高まり、複雑なタスクに取り組むためにモジュールの一部とモジュールの動的アセンブリを推論することができる。
各機能モジュールを表すブロックという用語を造語し、モジュール化された構造をカスタマイズ可能な基礎モデルとして定義する。
検索とルーティング,マージ,更新,成長という,レンガ指向の4つの操作を提示する。
FFN層はニューロンの機能的特殊化と機能的ニューロン分割を伴うモジュラーパターンに従うことが判明した。
論文 参考訳(メタデータ) (2024-09-04T17:01:02Z) - Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach [1.8874331450711404]
本稿では,イベントログのモデリング,インテリジェントなモデリングアシスタント,モデリング操作の生成を組み合わせた概念的フレームワークを提案する。
特に、アーキテクチャは、設計者がシステムを指定するのを助け、その操作をグラフィカルなモデリング環境内で記録し、関連する操作を自動的に推奨する、モデリングコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-08-26T13:26:44Z) - Beyond development: Challenges in deploying machine learning models for structural engineering applications [2.6415688445750383]
本稿では,2つの具体例を通して,デプロイメントに適した機械学習モデルを開発する上での課題について述べる。
様々な落とし穴の中で、提示された議論は、モデルの過度な適合と過小評価、トレーニングデータ代表性、変数の欠落バイアス、およびクロスバリデーションに焦点を当てている。
その結果、適応サンプリングによる厳密なモデル検証手法の実装の重要性、注意深い物理インフォームド特徴選択、モデルの複雑さと一般化可能性の両方について考察した。
論文 参考訳(メタデータ) (2024-04-18T23:40:42Z) - Identifying Simulation Model Through Alternative Techniques for a
Medical Device Assembly Process [0.0]
本稿では,シミュレーションモデルの同定と近似のための2つの異なるアプローチについて検討する。
私たちのゴールは、スナッププロセスを正確に表現し、多様なシナリオに対応できる適応可能なモデルを作ることです。
論文 参考訳(メタデータ) (2023-09-26T17:40:29Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
大規模に多様なデータに基づいて事前訓練された基礎モデルは、幅広いビジョンと言語タスクにおいて異常な能力を示してきた。
ファンデーションモデルをトレーニングし、他のエージェントと対話し、長期的な推論を行うための新しいパラダイムが生まれている。
基礎モデルと意思決定の交わりにおける研究は、強力な新しいシステムを作るための大きな約束である。
論文 参考訳(メタデータ) (2023-03-07T18:44:07Z) - Modular Deep Learning [120.36599591042908]
トランスファーラーニングは近年、機械学習の主要なパラダイムとなっている。
負の干渉を伴わずに複数のタスクを専門とするモデルを開発する方法はまだ不明である。
これらの課題に対する有望な解決策として、モジュール型ディープラーニングが登場した。
論文 参考訳(メタデータ) (2023-02-22T18:11:25Z) - Deep Learning for Choice Modeling [5.173001988341294]
我々は,機能フリーと機能ベースという2つの選択モデルに基づいて,ディープラーニングに基づく選択モデルを構築した。
本モデルでは,候補選択に対する本質的効用と,候補選択が選択確率に与える影響の両方を捉える。
論文 参考訳(メタデータ) (2022-08-19T13:10:17Z) - A review of approaches to modeling applied vehicle routing problems [77.34726150561087]
車両経路問題のモデル化手法について概説する。
モデリング手法を評価するためのいくつかの基準を定式化する。
我々はVRPドメインのモデリング分野における今後の研究の道について論じる。
論文 参考訳(メタデータ) (2021-05-23T14:50:14Z) - Bayesian Stress Testing of Models in a Classification Hierarchy [0.0]
現実のアプリケーションで機械学習ソリューションを構築するには、しばしば、問題を様々な複雑さの複数のモデルに分解する。
このような階層内のモデル間の相互作用をモデル化するためのベイズ的枠組みを提案する。
我々は、このフレームワークが全体的なソリューションのストレステストを容易にし、アクティブなデプロイ前に期待されるパフォーマンスをより信頼できることを示した。
論文 参考訳(メタデータ) (2020-05-25T18:22:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。