Classical-Quantum Dual Encoding for Laser Communications in Space
- URL: http://arxiv.org/abs/2404.12600v1
- Date: Fri, 19 Apr 2024 03:07:58 GMT
- Title: Classical-Quantum Dual Encoding for Laser Communications in Space
- Authors: Matthew S. Winnel, Ziqing Wang, Robert Malaney, Ryan Aguinaldo, Jonathan Green, Timothy C. Ralph,
- Abstract summary: In typical laser communications classical information is encoded by modulating the amplitude of the laser beam and measured via direct detection.
We consider a simultaneous classical-quantum communication scheme where the classical information is encoded in the usual way and the quantum information is encoded as fluctuations of a sub-Poissonian noise-floor.
- Score: 0.8972186395640676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In typical laser communications classical information is encoded by modulating the amplitude of the laser beam and measured via direct detection. We add a layer of security using quantum physics to this standard scheme, applicable to free-space channels. We consider a simultaneous classical-quantum communication scheme where the classical information is encoded in the usual way and the quantum information is encoded as fluctuations of a sub-Poissonian noise-floor. For secret key generation, we consider a continuous-variable quantum key distribution protocol (CVQKD) using a Gaussian ensemble of squeezed states and direct detection. Under the assumption of passive attacks secure key generation and classical communication can proceed simultaneously. Compared with standard CVQKD. which is secure against unrestricted attacks, our added layer of quantum security is simple to implement, robust and does not affect classical data rates. We perform detailed simulations of the performance of the protocol for a free-space atmospheric channel. We analyse security of the CVQKD protocol in the composable finite-size regime.
Related papers
- Security Enhancement of Quantum Communication in Space-Air-Ground Integrated Networks [7.404591865944407]
Quantum teleportation achieves the transmission of quantum states through quantum channels.
We propose a practical solution that ensures secure information transmission even in the presence of errors in both classical and quantum channels.
arXiv Detail & Related papers (2024-10-22T14:27:21Z) - Composable free-space continuous-variable quantum key distribution using discrete modulation [3.864405940022529]
Continuous-variable (CV) quantum key distribution (QKD) allows for quantum secure communication.
We present a CV QKD system using discrete modulation that is especially designed for urban atmospheric channels.
This will allow to expand CV QKD networks beyond the existing fiber backbone.
arXiv Detail & Related papers (2024-10-16T18:02:53Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Deep-Learning-Based Radio-Frequency Side-Channel Attack on Quantum Key
Distribution [0.0]
Quantum key distribution (QKD) protocols are proven secure based on fundamental physical laws.
Side channels, where the encoded quantum state is correlated with properties of other degrees of freedom of the quantum channel, allow an eavesdropper to obtain information unnoticeably.
We here demonstrate a side-channel attack using a deep convolutional neural network to analyze the recorded classical, radio-frequency electromagnetic emissions.
arXiv Detail & Related papers (2023-10-20T18:00:02Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Quantum Encryption in Phase Space for Coherent Optical Communications [0.0]
Quantum Encryption in Phase Space (QEPS) is a physical layer encryption method to secure data over the optical fiber.
We study two preventative measures for different modulation formats which will prevent an eavesdropper from obtaining any data.
arXiv Detail & Related papers (2023-01-15T15:08:53Z) - Modulation leakage-free continuous-variable quantum key distribution [1.8268488712787332]
Continuous-variable (CV) QKD based on coherent states is an attractive scheme for secure communication.
This work is a step towards protecting CVQKD systems against practical imperfections of physical devices and operational limitations without performance degradation.
arXiv Detail & Related papers (2022-05-15T10:07:19Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.