LLM App Store Analysis: A Vision and Roadmap
- URL: http://arxiv.org/abs/2404.12737v2
- Date: Mon, 18 Nov 2024 11:21:38 GMT
- Title: LLM App Store Analysis: A Vision and Roadmap
- Authors: Yanjie Zhao, Xinyi Hou, Shenao Wang, Haoyu Wang,
- Abstract summary: Large language model (LLM) app stores have created new opportunities and challenges for researchers, developers, users, and app store managers.
This paper presents a forward-looking analysis of LLM app stores, focusing on key aspects such as data mining, security risk identification, development assistance, and market dynamics.
- Score: 5.1875389249043415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth and popularity of large language model (LLM) app stores have created new opportunities and challenges for researchers, developers, users, and app store managers. As the LLM app ecosystem continues to evolve, it is crucial to understand the current landscape and identify potential areas for future research and development. This paper presents a forward-looking analysis of LLM app stores, focusing on key aspects such as data mining, security risk identification, development assistance, and market dynamics. Our comprehensive examination extends to the intricate relationships between various stakeholders and the technological advancements driving the ecosystem's growth. We explore the ethical considerations and potential societal impacts of widespread LLM app adoption, highlighting the need for responsible innovation and governance frameworks. By examining these aspects, we aim to provide a vision for future research directions and highlight the importance of collaboration among stakeholders to address the challenges and opportunities within the LLM app ecosystem. The insights and recommendations provided in this paper serve as a foundation for driving innovation, ensuring responsible development, and creating a thriving, user-centric LLM app landscape.
Related papers
- Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap [51.198001060683296]
Large Language Models (LLMs) offer transformative potential to address transportation challenges.
This survey first presents LLM4TR, a novel conceptual framework that systematically categorizes the roles of LLMs in transportation.
For each role, our review spans diverse applications, from traffic prediction and autonomous driving to safety analytics and urban mobility optimization.
arXiv Detail & Related papers (2025-03-27T11:56:27Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems.
LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations.
arXiv Detail & Related papers (2025-03-20T22:37:15Z) - DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey [62.697565282841026]
Reinforcement learning (RL)-based large language models (LLMs) have gained significant attention.
Wireless networks require the empowerment of RL-based LLMs.
Wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs.
arXiv Detail & Related papers (2025-03-13T01:59:11Z) - LLMs in Mobile Apps: Practices, Challenges, and Opportunities [4.104646810514711]
The integration of AI techniques has become increasingly popular in software development.
With the rise of large language models (LLMs) and generative AI, developers now have access to a wealth of high-quality open-source models and APIs from closed-source providers.
arXiv Detail & Related papers (2025-02-21T19:53:43Z) - Addressing Bias in Generative AI: Challenges and Research Opportunities in Information Management [3.9775368901759207]
Generative AI technologies have transformed information management systems but introduced substantial biases that can compromise their effectiveness in informing business decision-making.
This challenge presents information management scholars with a unique opportunity to advance the field by identifying and addressing these biases across extensive applications of Large Language Models (LLMs)
By incorporating ethical considerations, policy implications, and sociotechnical perspectives, we focus on developing a framework that covers major stakeholders of Generative AI systems, proposing key research questions, and inspiring discussion.
arXiv Detail & Related papers (2025-01-22T10:14:31Z) - Integrating LLMs with ITS: Recent Advances, Potentials, Challenges, and Future Directions [1.6121249557846946]
This paper comprehensively reviews the transformative potential of Large Language Models (LLMs) in optimizing ITS.
Our analysis reveals how these advanced models can significantly enhance traffic management and safety.
This paper aims to guide researchers and practitioners through the complexities and opportunities of integrating LLMs in ITS.
arXiv Detail & Related papers (2025-01-08T11:37:35Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Decoding Large-Language Models: A Systematic Overview of Socio-Technical Impacts, Constraints, and Emerging Questions [1.1970409518725493]
The article highlights the application areas that could have a positive impact on society along with the ethical considerations.
It includes responsible development considerations, algorithmic improvements, ethical challenges, and societal implications.
arXiv Detail & Related papers (2024-09-25T14:36:30Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - Large Language Model Supply Chain: A Research Agenda [5.1875389249043415]
Large language models (LLMs) have revolutionized artificial intelligence, introducing unprecedented capabilities in natural language processing and multimodal content generation.
This paper provides the first comprehensive research agenda of the LLM supply chain, offering a structured approach to identify critical challenges and opportunities.
arXiv Detail & Related papers (2024-04-19T09:29:53Z) - LLM-Based Multi-Agent Systems for Software Engineering: Vision and the Road Ahead [14.834072370183106]
This paper envisions the evolution of Multi-Agent (LMA) systems in addressing complex and multi-faceted software engineering challenges.
By examining the role of LMA systems in future software engineering practices, this vision paper highlights the potential applications and emerging challenges.
arXiv Detail & Related papers (2024-04-07T07:05:40Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
We systematically review the technological advancements in each perspective, organize related datasets and benchmarks, and identify the risks and challenges associated with deploying LLMs in education.
Our survey aims to provide a comprehensive technological picture for educators, researchers, and policymakers to harness the power of LLMs to revolutionize educational practices and foster a more effective personalized learning environment.
arXiv Detail & Related papers (2024-03-26T21:04:29Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
Large language models (LLMs) are gaining increasing popularity in both academia and industry.
This paper focuses on three key dimensions: what to evaluate, where to evaluate, and how to evaluate.
arXiv Detail & Related papers (2023-07-06T16:28:35Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.