Integrating LLMs with ITS: Recent Advances, Potentials, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2501.04437v1
- Date: Wed, 08 Jan 2025 11:37:35 GMT
- Title: Integrating LLMs with ITS: Recent Advances, Potentials, Challenges, and Future Directions
- Authors: Doaa Mahmud, Hadeel Hajmohamed, Shamma Almentheri, Shamma Alqaydi, Lameya Aldhaheri, Ruhul Amin Khalil, Nasir Saeed,
- Abstract summary: This paper comprehensively reviews the transformative potential of Large Language Models (LLMs) in optimizing ITS.
Our analysis reveals how these advanced models can significantly enhance traffic management and safety.
This paper aims to guide researchers and practitioners through the complexities and opportunities of integrating LLMs in ITS.
- Score: 1.6121249557846946
- License:
- Abstract: Intelligent Transportation Systems (ITS) are crucial for the development and operation of smart cities, addressing key challenges in efficiency, productivity, and environmental sustainability. This paper comprehensively reviews the transformative potential of Large Language Models (LLMs) in optimizing ITS. Initially, we provide an extensive overview of ITS, highlighting its components, operational principles, and overall effectiveness. We then delve into the theoretical background of various LLM techniques, such as GPT, T5, CTRL, and BERT, elucidating their relevance to ITS applications. Following this, we examine the wide-ranging applications of LLMs within ITS, including traffic flow prediction, vehicle detection and classification, autonomous driving, traffic sign recognition, and pedestrian detection. Our analysis reveals how these advanced models can significantly enhance traffic management and safety. Finally, we explore the challenges and limitations LLMs face in ITS, such as data availability, computational constraints, and ethical considerations. We also present several future research directions and potential innovations to address these challenges. This paper aims to guide researchers and practitioners through the complexities and opportunities of integrating LLMs in ITS, offering a roadmap to create more efficient, sustainable, and responsive next-generation transportation systems.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - A Survey of Reinforcement Learning for Optimization in Automation [0.0]
Review article examines the current landscape of RL within automation, with a particular focus on its roles in manufacturing, energy systems, and robotics.
It discusses state-of-the-art methods, major challenges, and upcoming avenues of research within each sector, highlighting RL's capacity to solve intricate optimization challenges.
arXiv Detail & Related papers (2025-02-13T15:40:39Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies.
This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs.
arXiv Detail & Related papers (2024-07-05T15:23:43Z) - New Solutions on LLM Acceleration, Optimization, and Application [14.995654657013741]
Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a range of applications.
However, the increasing size and complexity of LLMs present significant challenges in both training and deployment.
We provide a review of recent advancements and research directions aimed at addressing these challenges.
arXiv Detail & Related papers (2024-06-16T11:56:50Z) - Large Language Models for Mobility in Transportation Systems: A Survey on Forecasting Tasks [8.548422411704218]
Machine learning and deep learning methods are favored for their flexibility and accuracy.
With the advent of large language models (LLMs), many researchers have combined these models with previous techniques or applied LLMs to directly predict future traffic information and human travel behaviors.
arXiv Detail & Related papers (2024-05-03T02:54:43Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - A Survey on the Applications of Frontier AI, Foundation Models, and
Large Language Models to Intelligent Transportation Systems [8.017557640367938]
This survey paper explores the transformative influence of frontier AI, foundation models, and Large Language Models (LLMs) in the realm of Intelligent Transportation Systems (ITS)
It emphasizes their integral role in advancing transportation intelligence, optimizing traffic management, and contributing to the realization of smart cities.
arXiv Detail & Related papers (2024-01-12T10:29:48Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.