論文の概要: Eyes Can Deceive: Benchmarking Counterfactual Reasoning Abilities of Multi-modal Large Language Models
- arxiv url: http://arxiv.org/abs/2404.12966v3
- Date: Fri, 30 Aug 2024 09:00:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 20:01:42.680533
- Title: Eyes Can Deceive: Benchmarking Counterfactual Reasoning Abilities of Multi-modal Large Language Models
- Title(参考訳): 視線が知覚できる:マルチモーダル大言語モデルの非現実的推論能力のベンチマーク
- Authors: Yian Li, Wentao Tian, Yang Jiao, Jingjing Chen,
- Abstract要約: textbfCountertextbfFactual textbfMultitextbfModal reasoning benchmark(略して textbfCFMM)を導入する。
我々のCFMMは6つの課題からなる。
既存のMLLMは、自分たちが見ているものを信じることを好むが、その疑問に提示される反実的な前提を無視している。
- 参考スコア(独自算出の注目度): 31.53954631903559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual reasoning, as a crucial manifestation of human intelligence, refers to making presuppositions based on established facts and extrapolating potential outcomes. Existing multimodal large language models (MLLMs) have exhibited impressive cognitive and reasoning capabilities, which have been examined across a wide range of Visual Question Answering (VQA) benchmarks. Nevertheless, how will existing MLLMs perform when faced with counterfactual questions? To answer this question, we first curate a novel \textbf{C}ounter\textbf{F}actual \textbf{M}ulti\textbf{M}odal reasoning benchmark, abbreviated as \textbf{CFMM}, to systematically assess the counterfactual reasoning capabilities of MLLMs. Our CFMM comprises six challenging tasks, each including hundreds of carefully human-labeled and GPT-generated counterfactual questions, to evaluate MLLM's counterfactual reasoning capabilities across diverse aspects. Through experiments, interestingly, we find that existing MLLMs prefer to believe what they see, but ignore the counterfactual presuppositions presented in the question, thereby leading to inaccurate responses. Furthermore, we evaluate a wide range of prevalent MLLMs on our proposed CFMM. The significant gap between their performance on our CFMM and that on several VQA benchmarks indicates that there is still considerable room for improvement in existing MLLMs toward approaching human-level intelligence. On the other hand, through boosting MLLMs performances on our CFMM in the future, potential avenues toward developing MLLMs with advanced intelligence can be explored.
- Abstract(参考訳): カウンターファクチュアル推論は、人間の知性の重要な証明として、確立した事実に基づいて仮定を行い、潜在的な結果を外挿することを指す。
既存のマルチモーダルな大規模言語モデル(MLLM)は、様々なビジュアル質問回答(VQA)ベンチマークで検証された、印象的な認知と推論能力を示した。
それでも、既存のMLLMは、逆問題に直面した場合、どのように機能するのか?
この疑問に答えるために,我々はまず,MLLM の因果推論能力を体系的に評価するために,新規な \textbf{C}ounter\textbf{F}actual \textbf{M}ulti\textbf{M}odal reasoning benchmark をキュレートする。
我々のCFMMは6つの課題から構成されており、それぞれが、多方面にわたるMLLMの対実的推論能力を評価するために、数百の人間ラベル付きおよびGPT生成の対実的質問を含む。
興味深いことに、実験を通して、既存のMLLMは、自分たちが見ているものを信じることを好んでいるが、問題に提示される偽の前提を無視し、不正確な応答をもたらす。
さらに,提案するCFMMを用いて,MLLMを広範囲に評価する。
CFMMのパフォーマンスといくつかのVQAベンチマークとの間の大きなギャップは、既存のMLLMが人間レベルのインテリジェンスに近づくための十分な改善の余地があることを示している。
一方,今後のCFMMにおけるMLLMの性能向上により,高度な知能を持つMLLMの開発に向けた潜在的な道筋を探求することができる。
関連論文リスト
- Exploring Large Language Models for Multimodal Sentiment Analysis: Challenges, Benchmarks, and Future Directions [0.0]
マルチモーダル・アスペクトベース感性分析(MABSA)は、テキストや画像を含む多モーダル情報からアスペクト項とその対応する感情極性を抽出することを目的としている。
従来の教師付き学習手法はこの課題において有効性を示したが、大規模言語モデル(LLM)のMABSAへの適応性は未だ不明である。
Llama2、LLaVA、ChatGPTなどのLLMの最近の進歩は、一般的なタスクにおいて強力な能力を示しているが、MABSAのような複雑できめ細かなシナリオでは、その性能が過小評価されている。
論文 参考訳(メタデータ) (2024-11-23T02:17:10Z) - Can Multimodal Large Language Model Think Analogically? [9.517193263050228]
MLLM(Multimodal Large Language Model)は、その創発的な機能のために最近、かなりの議論を巻き起こした。
説明者としてのtextitMLLM と予測者としての textitMLLM の2つの側面を探索する。
本稿では、MLLMの理解能力を利用して既存のモデルを拡張する統一的なプロンプトテンプレートと手法を提案する。
論文 参考訳(メタデータ) (2024-11-02T16:59:49Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark [41.68821233828375]
本稿では,MLLM-as-a-Judgeと呼ばれる新しいベンチマークを導入し,多様なモダリティにまたがる審査員を支援するMLLMの能力を評価する。
本研究は, MLLMがPair Comparisonにおいて顕著な人間ライクな識別を示す一方で, Scoring EvaluationとBatch Rankingにおいて, 人間の嗜好とは大きく異なることを明らかにした。
論文 参考訳(メタデータ) (2024-02-07T12:28:32Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z) - Mind's Mirror: Distilling Self-Evaluation Capability and Comprehensive Thinking from Large Language Models [20.28989820878285]
大規模言語モデル (LLM) は自然言語処理において顕著な進歩を遂げている。
これらのモデルの大規模かつ計算的な要求は、資源に制約のある環境での実践的展開を考えると、大きな課題となる。
論文 参考訳(メタデータ) (2023-11-15T18:56:23Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。