論文の概要: Modeling Emotions and Ethics with Large Language Models
- arxiv url: http://arxiv.org/abs/2404.13071v2
- Date: Tue, 25 Jun 2024 04:36:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 19:59:30.894397
- Title: Modeling Emotions and Ethics with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた感情と倫理のモデル化
- Authors: Edward Y. Chang,
- Abstract要約: まず、8つの基本的感情をモデル化し、対立するペアとして提示し、これらの感情を再解釈し表現するために協調的なLLMを用いる。
我々の焦点は、人間のフィードバックによる新しい自己教師付き学習アルゴリズムによって導かれる、LSMに潜伏する倫理的次元を埋め込むことにまで及んでいる。
- 参考スコア(独自算出の注目度): 2.5200794639628032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the integration of human-like emotions and ethical considerations into Large Language Models (LLMs). We first model eight fundamental human emotions, presented as opposing pairs, and employ collaborative LLMs to reinterpret and express these emotions across a spectrum of intensity. Our focus extends to embedding a latent ethical dimension within LLMs, guided by a novel self-supervised learning algorithm with human feedback (SSHF). This approach enables LLMs to perform self-evaluations and adjustments concerning ethical guidelines, enhancing their capability to generate content that is not only emotionally resonant but also ethically aligned. The methodologies and case studies presented herein illustrate the potential of LLMs to transcend mere text and image generation, venturing into the realms of empathetic interaction and principled decision-making, thereby setting a new precedent in the development of emotionally aware and ethically conscious AI systems.
- Abstract(参考訳): 本稿では,人間のような感情と倫理的考察をLarge Language Models (LLMs) に統合することを検討する。
まず、8つの基本的感情をモデル化し、対立するペアとして提示し、協調的なLLMを用いて、これらの感情を様々な強度で再解釈し表現する。
我々の焦点は、人間のフィードバックによる新しい自己教師付き学習アルゴリズム(SSHF)によって導かれ、LSM内に潜伏する倫理的次元を埋め込むことにまで及んでいる。
このアプローチにより、LLMは倫理的ガイドラインに関する自己評価や調整を行い、感情的に共鳴するだけでなく倫理的に整合したコンテンツを生成する能力を高めることができる。
ここで提示された方法論と事例研究は、LLMが単なるテキストと画像生成を超越し、共感的相互作用と原則化された意思決定の領域に介入し、感情的に意識され倫理的に意識されたAIシステムの開発における新たな先例を定めている。
関連論文リスト
- EmoLLM: Multimodal Emotional Understanding Meets Large Language Models [61.179731667080326]
マルチモーダル・大規模言語モデル(MLLM)は、目的とするマルチモーダル認識タスクにおいて顕著な性能を達成している。
しかし、主観的、感情的にニュアンスのあるマルチモーダルコンテンツを解釈する能力はほとんど解明されていない。
EmoLLMは、マルチモーダルな感情理解のための新しいモデルであり、2つのコア技術が組み込まれている。
論文 参考訳(メタデータ) (2024-06-24T08:33:02Z) - LLMs Could Autonomously Learn Without External Supervision [36.36147944680502]
大規模言語モデル(LLM)は、伝統的に人間の注釈付きデータセットと事前定義されたトレーニング目標に結び付けられてきた。
本稿では,LLMのための自律学習手法を提案する。
本手法は, LLMに対して, 文章と直接対話して自己学習を行う能力を与える。
論文 参考訳(メタデータ) (2024-06-02T03:36:37Z) - Navigating LLM Ethics: Advancements, Challenges, and Future Directions [5.023563968303034]
本研究では,人工知能分野におけるLarge Language Models(LLM)を取り巻く倫理的問題に対処する。
LLMと他のAIシステムによってもたらされる共通の倫理的課題を探求する。
幻覚、検証可能な説明責任、検閲の複雑さの復号化といった課題を強調している。
論文 参考訳(メタデータ) (2024-05-14T15:03:05Z) - Integrating Emotional and Linguistic Models for Ethical Compliance in Large Language Models [2.5200794639628032]
本研究は、感情や倫理に関する言語行動をよりよく管理するために、大規模言語モデル(LLM)の高度な方法論を開発する。
我々は,LLMがグローバルな人的価値を内在化し,反映する能力を高めるための,敵対的枠組みであるDIKEを紹介する。
論文 参考訳(メタデータ) (2024-05-11T19:26:00Z) - Enhancing Emotional Generation Capability of Large Language Models via
Emotional Chain-of-Thought [53.1230874584344]
大規模言語モデル(LLM)は様々な感情認識タスクにおいて顕著な性能を示した。
本研究では,感情生成タスクにおけるLLMの性能を高めるための感情連鎖(ECoT)を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:42:10Z) - An Appraisal-Based Chain-Of-Emotion Architecture for Affective Language
Model Game Agents [0.40964539027092906]
本研究では,感情的知性課題の解決と感情のシミュレートを目的とした大規模言語モデルの能力について検討する。
心理学的評価研究に基づいて,ゲーム内の感情シミュレーションのための新たな感情連鎖アーキテクチャを提示し,評価する。
論文 参考訳(メタデータ) (2023-09-10T16:55:49Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z) - Principle-Driven Self-Alignment of Language Models from Scratch with
Minimal Human Supervision [84.31474052176343]
ChatGPTのような最近のAIアシスタントエージェントは、人間のアノテーションと人間のフィードバックからの強化学習を教師付き微調整(SFT)に頼り、アウトプットを人間の意図に合わせる。
この依存は、人間の監督を得るために高いコストがかかるため、AIアシスタントエージェントの真の可能性を大幅に制限することができる。
本稿では,AIエージェントの自己調整と人間監督の最小化のために,原則駆動推論とLLMの生成能力を組み合わせたSELF-ALIGNという新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-04T17:59:28Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。