論文の概要: Modeling Emotions and Ethics with Large Language Models
- arxiv url: http://arxiv.org/abs/2404.13071v2
- Date: Tue, 25 Jun 2024 04:36:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 19:59:30.894397
- Title: Modeling Emotions and Ethics with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた感情と倫理のモデル化
- Authors: Edward Y. Chang,
- Abstract要約: まず、8つの基本的感情をモデル化し、対立するペアとして提示し、これらの感情を再解釈し表現するために協調的なLLMを用いる。
我々の焦点は、人間のフィードバックによる新しい自己教師付き学習アルゴリズムによって導かれる、LSMに潜伏する倫理的次元を埋め込むことにまで及んでいる。
- 参考スコア(独自算出の注目度): 2.5200794639628032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the integration of human-like emotions and ethical considerations into Large Language Models (LLMs). We first model eight fundamental human emotions, presented as opposing pairs, and employ collaborative LLMs to reinterpret and express these emotions across a spectrum of intensity. Our focus extends to embedding a latent ethical dimension within LLMs, guided by a novel self-supervised learning algorithm with human feedback (SSHF). This approach enables LLMs to perform self-evaluations and adjustments concerning ethical guidelines, enhancing their capability to generate content that is not only emotionally resonant but also ethically aligned. The methodologies and case studies presented herein illustrate the potential of LLMs to transcend mere text and image generation, venturing into the realms of empathetic interaction and principled decision-making, thereby setting a new precedent in the development of emotionally aware and ethically conscious AI systems.
- Abstract(参考訳): 本稿では,人間のような感情と倫理的考察をLarge Language Models (LLMs) に統合することを検討する。
まず、8つの基本的感情をモデル化し、対立するペアとして提示し、協調的なLLMを用いて、これらの感情を様々な強度で再解釈し表現する。
我々の焦点は、人間のフィードバックによる新しい自己教師付き学習アルゴリズム(SSHF)によって導かれ、LSM内に潜伏する倫理的次元を埋め込むことにまで及んでいる。
このアプローチにより、LLMは倫理的ガイドラインに関する自己評価や調整を行い、感情的に共鳴するだけでなく倫理的に整合したコンテンツを生成する能力を高めることができる。
ここで提示された方法論と事例研究は、LLMが単なるテキストと画像生成を超越し、共感的相互作用と原則化された意思決定の領域に介入し、感情的に意識され倫理的に意識されたAIシステムの開発における新たな先例を定めている。
関連論文リスト
- MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Recent Advancement of Emotion Cognition in Large Language Models [40.23093997384297]
大規模言語モデル(LLM)における感情認知は、様々なアプリケーションのパフォーマンス向上に不可欠である。
我々は、感情分類、感情的に豊かな反応生成、心の理論などを中心に、現在の研究の展望を探求する。
論文 参考訳(メタデータ) (2024-09-20T09:34:58Z) - Cause-Aware Empathetic Response Generation via Chain-of-Thought Fine-Tuning [12.766893968788263]
共感反応生成は、対話の文脈を理解し、表現された感情に反応する能力を持つエージェントを与える。
先行研究は、主に話者の感情的ラベルを活用することに重点を置いているが、感情の重要性が原因の推論を無視している。
そこで我々は,感情と原因をうまく設計したChain-of-Thoughtプロンプトを通じて統合した原因認識型共感生成手法を提案する。
論文 参考訳(メタデータ) (2024-08-21T13:11:03Z) - Navigating LLM Ethics: Advancements, Challenges, and Future Directions [5.023563968303034]
本研究では,人工知能分野におけるLarge Language Models(LLM)を取り巻く倫理的問題に対処する。
LLMと他のAIシステムによってもたらされる共通の倫理的課題を探求する。
幻覚、検証可能な説明責任、検閲の複雑さの復号化といった課題を強調している。
論文 参考訳(メタデータ) (2024-05-14T15:03:05Z) - Integrating Emotional and Linguistic Models for Ethical Compliance in Large Language Models [2.5200794639628032]
本研究は、感情や倫理に関する言語行動をよりよく管理するために、大規模言語モデル(LLM)の高度な方法論を開発する。
我々は,LLMがグローバルな人的価値を内在化し,反映する能力を高めるための,敵対的枠組みであるDIKEを紹介する。
論文 参考訳(メタデータ) (2024-05-11T19:26:00Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
大規模言語モデル(LLM)は様々な感情認識タスクにおいて顕著な性能を示した。
本研究では,感情生成タスクにおけるLLMの性能を高めるための感情連鎖(ECoT)を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:42:10Z) - Rational Sensibility: LLM Enhanced Empathetic Response Generation Guided by Self-presentation Theory [8.439724621886779]
LLM(Large Language Models)の開発は、人間中心の人工知能(AGI)に希望の光を与えている。
共感は人間にとって重要な感情的属性として機能し、人間中心のAGIにおいて不定の役割を果たす。
本稿では,社会学における自己表現理論にインスパイアされた革新的なエンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2023-12-14T07:38:12Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。