Improving probabilistic error cancellation in the presence of non-stationary noise
- URL: http://arxiv.org/abs/2404.13269v2
- Date: Tue, 9 Jul 2024 16:37:45 GMT
- Title: Improving probabilistic error cancellation in the presence of non-stationary noise
- Authors: Samudra Dasgupta, Travis S. Humble,
- Abstract summary: We design a strategy to enhance PEC stability and accuracy in the presence of non-stationary noise.
Experiments using a 5-qubit implementation of the Bernstein-Vazirani algorithm and conducted on the ibm_kolkata device reveal a 42% improvement in accuracy and a 60% enhancement in stability.
- Score: 0.1227734309612871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the stability of probabilistic error cancellation (PEC) outcomes in the presence of non-stationary noise, which is an obstacle to achieving accurate observable estimates. Leveraging Bayesian methods, we design a strategy to enhance PEC stability and accuracy. Our experiments using a 5-qubit implementation of the Bernstein-Vazirani algorithm and conducted on the ibm_kolkata device reveal a 42% improvement in accuracy and a 60% enhancement in stability compared to non-adaptive PEC. These results underscore the importance of adaptive estimation processes to effectively address non-stationary noise, vital for advancing PEC utility.
Related papers
- Using dynamic loss weighting to boost improvements in forecast stability [0.9332308328407303]
Rolling origin forecast instability refers to variability in forecasts for a specific period induced by updating the forecast.
In this paper, we empirically investigate whether further improvements in stability can be obtained without compromising accuracy by applying dynamic loss weighting algorithms.
arXiv Detail & Related papers (2024-09-26T20:21:46Z) - Identity Curvature Laplace Approximation for Improved Out-of-Distribution Detection [4.779196219827508]
Uncertainty estimation is crucial in safety-critical applications, where robust out-of-distribution detection is essential.
Traditional Bayesian methods, though effective, are often hindered by high computational demands.
We introduce the Identity Curvature Laplace Approximation (ICLA), a novel method that challenges the conventional posterior coimation formulation.
arXiv Detail & Related papers (2023-12-16T14:46:24Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Adaptive mitigation of time-varying quantum noise [0.1227734309612871]
Current quantum computers suffer from non-stationary noise channels with high error rates.
We propose a Bayesian inference-based adaptive algorithm that can learn and mitigate quantum noise in response to changing channel conditions.
arXiv Detail & Related papers (2023-08-16T01:33:07Z) - Impact of unreliable devices on stability of quantum computations [0.1227734309612871]
Noisy intermediate-scale quantum (NISQ) devices are valuable platforms for testing the tenets of quantum computing.
These devices are susceptible to errors arising from de-coherence, leakage, cross-talk and other sources of noise.
Here, we quantify the reliability of NISQ devices by assessing the necessary conditions for generating stable results within a given tolerance.
arXiv Detail & Related papers (2023-07-13T17:53:42Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation [12.415463205960156]
In model-free deep reinforcement learning (RL) algorithms, using noisy value estimates to supervise policy evaluation and optimization is detrimental to the sample efficiency.
We provide a systematic analysis of the sources of uncertainty in the noisy supervision that occurs in RL.
We propose a method whereby two complementary uncertainty estimation methods account for both the Q-value and the environmentity to better mitigate the negative impacts of noisy supervision.
arXiv Detail & Related papers (2022-01-05T15:46:06Z) - Analyzing and Improving the Optimization Landscape of Noise-Contrastive
Estimation [50.85788484752612]
Noise-contrastive estimation (NCE) is a statistically consistent method for learning unnormalized probabilistic models.
It has been empirically observed that the choice of the noise distribution is crucial for NCE's performance.
In this work, we formally pinpoint reasons for NCE's poor performance when an inappropriate noise distribution is used.
arXiv Detail & Related papers (2021-10-21T16:57:45Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.