Effects of higher-order Casimir-Polder interactions on Rydberg atom spectroscopy
- URL: http://arxiv.org/abs/2404.13354v1
- Date: Sat, 20 Apr 2024 11:29:38 GMT
- Title: Effects of higher-order Casimir-Polder interactions on Rydberg atom spectroscopy
- Authors: Biplab Dutta, Joao Carlos de Aquino Carvalho, Guadalupe Garcia-Arellano, Paolo Pedri, Athanasios Laliotis, Chris Boldt, Jivesh Kaushal, Stefan Scheel,
- Abstract summary: We calculate the higher-order, quadrupole and octupole, contributions to Casimir-Polder energy shifts.
This new regime of extremely small atom surface separations is relevant for quantum technology applications with Rydberg or surface-bound atoms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the extreme near-field, when the spatial extension of the atomic wavefunction is no longer negligible compared to the atom-surface distance, the dipole approximation is no longer sufficient to describe Casimir-Polder interactions. Here we calculate the higher-order, quadrupole and octupole, contributions to Casimir-Polder energy shifts of Rydberg atoms close to a dielectric surface. We subsequently investigate the effects of these higher-order terms in thin-cell and selective reflection spectroscopy. Beyond its fundamental interest, this new regime of extremely small atom surface separations is relevant for quantum technology applications with Rydberg or surface-bound atoms interfacing with photonic platforms.
Related papers
- Atom-Field-Medium Interactions III: Quantum Field-mediated Entanglement between Two Atoms near a Conducting Surface [0.0]
Third paper in this series focuses on quantum information related basic issues such as decoherence and entanglement.<n>We consider the entanglement between two atoms with varying separations between them and varying distances between them and a conducting surface.<n>We show how different factors play out, ranging from the coupling between the atoms and the field to the coupling between the atoms.
arXiv Detail & Related papers (2025-07-27T10:39:29Z) - Dispersive interaction between two atoms in Proca Quantum Electrodynamics [0.0]
We analyze the influence of a massive photon in the dispersive interaction between two atoms in their fundamental states.
The photon mass not only introduces a new length scale but also gives rise to a longitudinal polarization for the electromagnetic field.
arXiv Detail & Related papers (2024-06-11T00:32:24Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Quantum Hall states for Rydberg atoms with laser-assisted dipole-dipole
interactions [1.9662978733004601]
We propose a novel scheme with laser-assisted dipole-dipole interactions to realize synthetic magnetic field for Rydberg atoms in a two-dimensional array configuration.
This work opens an avenue for the realization of the highly-sought-after bosonic topological orders using Rydberg atoms.
arXiv Detail & Related papers (2022-04-14T16:28:07Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Self-induced transparency in warm and strongly interacting Rydberg gases [1.433758865948252]
We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors.
We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect.
In this regime, self-induced transparency emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction.
arXiv Detail & Related papers (2020-04-28T16:16:01Z) - Observation of the Dipole Blockade Effect in Detecting Rydberg Atoms by
the Selective Field Ionization Method [0.0]
The excitation of one atom to a Rydberg state blocks the excitation of other atoms due to the shift in the collective energy levels of interacting Rydberg atoms.
We investigated the spectra of the three-photon laser excitation of cold Rb Rydberg atoms in a magneto-optical trap.
arXiv Detail & Related papers (2020-04-21T12:09:33Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.