論文の概要: Utilizing Deep Learning to Optimize Software Development Processes
- arxiv url: http://arxiv.org/abs/2404.13630v1
- Date: Sun, 21 Apr 2024 12:06:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 18:11:42.968103
- Title: Utilizing Deep Learning to Optimize Software Development Processes
- Title(参考訳): ディープラーニングを活用したソフトウェア開発プロセスの最適化
- Authors: Keqin Li, Armando Zhu, Wenjing Zhou, Peng Zhao, Jintong Song, Jiabei Liu,
- Abstract要約: 本研究では,ソフトウェア開発プロセスにおけるディープラーニング技術の応用について検討する。
実験は、実験グループにおいて顕著な改善を示し、ディープラーニング技術の有効性を検証した。
- 参考スコア(独自算出の注目度): 12.228172708089463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the application of deep learning technologies in software development processes, particularly in automating code reviews, error prediction, and test generation to enhance code quality and development efficiency. Through a series of empirical studies, experimental groups using deep learning tools and control groups using traditional methods were compared in terms of code error rates and project completion times. The results demonstrated significant improvements in the experimental group, validating the effectiveness of deep learning technologies. The research also discusses potential optimization points, methodologies, and technical challenges of deep learning in software development, as well as how to integrate these technologies into existing software development workflows.
- Abstract(参考訳): 本研究では、特にコードレビュー、エラー予測、テスト生成を自動化することで、コード品質と開発効率を向上させるために、ディープラーニング技術のソフトウェア開発プロセスへの適用について検討する。
一連の実証研究を通じて,ディープラーニングツールを用いた実験グループと従来の手法を用いた制御グループを比較し,コードエラー率とプロジェクト完了時間を比較した。
その結果,実験群では有意な改善が見られ,深層学習技術の有効性が検証された。
この研究は、ソフトウェア開発におけるディープラーニングの潜在的な最適化ポイント、方法論、技術的課題、およびこれらの技術を既存のソフトウェア開発ワークフローに統合する方法についても論じている。
関連論文リスト
- The Enhancement of Software Delivery Performance through Enterprise DevSecOps and Generative Artificial Intelligence in Chinese Technology Firms [0.4532517021515834]
本研究では、DevSecOpsとGenerative Artificial Intelligenceの統合が、IT企業におけるソフトウェアデリバリのパフォーマンスに与える影響について検討する。
その結果、研究開発の効率が大幅に向上し、ソースコード管理が改善され、ソフトウェアの品質とセキュリティが向上した。
論文 参考訳(メタデータ) (2024-11-04T16:44:01Z) - The Role of Generative AI in Software Development Productivity: A Pilot Case Study [0.0]
本稿では,ソフトウェア開発における生成AIツールの統合について検討する。
パイロットケーススタディを通じて、生成可能なAIツールを日々の作業ルーチンに統合する上で、貴重な経験を集めました。
以上の結果から,これらのツールの個人の生産性に対する肯定的な認識と,特定された制限に対処する必要性が示唆された。
論文 参考訳(メタデータ) (2024-06-01T21:51:33Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
大規模言語モデル(LLM)は、ユーザが仕事を達成するのを助けるアシスタントとして機能し、高度なアプリケーションの開発をサポートする。
LLMの幅広い応用にとって、推論効率は重要な問題であり、既存の研究で広く研究されている。
各種コードライブラリの推論性能の粗大な解析を行う。
論文 参考訳(メタデータ) (2024-04-17T15:57:50Z) - Leveraging AI for Enhanced Software Effort Estimation: A Comprehensive
Study and Framework Proposal [2.8643479919807433]
本研究は,従来の手法の限界を克服し,精度と信頼性を向上させることを目的とする。
提案されたAIベースのフレームワークは、プロジェクトの計画とリソース割り当てを強化する可能性を秘めている。
論文 参考訳(メタデータ) (2024-02-08T08:25:41Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
本研究は,ソフトウェアビジュアライゼーションツールを用いたマネージャ,リーダ,開発者の親しみやすさを探求することを目的としている。
本手法は, 質問紙調査と半構造化面接を用いて, 実践者から収集したデータの量的, 質的分析を取り入れた。
論文 参考訳(メタデータ) (2024-01-17T21:30:45Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - Devops And Agile Methods Integrated Software Configuration Management
Experience [0.0]
本研究の目的は,従来の手法と比較して,革新的な手法がソフトウェア構成管理分野にもたらす違いとメリットを検討することである。
ビルドとデプロイメント時間、自動レポート生成、より正確でフォールトフリーなバージョン管理で改善が見られる。
論文 参考訳(メタデータ) (2023-06-24T13:40:27Z) - PerfDetectiveAI -- Performance Gap Analysis and Recommendation in
Software Applications [0.0]
本稿では,ソフトウェアアプリケーションにおける性能ギャップ分析と提案のための概念的フレームワークPerfDetectiveAIを紹介する。
現代の機械学習(ML)と人工知能(AI)技術は、PerfDetectiveAIでパフォーマンス測定を監視し、ソフトウェアアプリケーションにおけるパフォーマンス不足の領域を特定するために使用されている。
論文 参考訳(メタデータ) (2023-06-11T02:53:04Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
機械学習(ML)アプローチのようなデータ駆動の手法は、大きな設計空間を合理的に探索する可能性が高い。
本研究の目的は,これまでのバイオプロセス開発におけるML手法の適用例を示すことである。
論文 参考訳(メタデータ) (2022-10-04T13:48:59Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。