論文の概要: SVGEditBench: A Benchmark Dataset for Quantitative Assessment of LLM's SVG Editing Capabilities
- arxiv url: http://arxiv.org/abs/2404.13710v1
- Date: Sun, 21 Apr 2024 16:44:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 17:42:20.403780
- Title: SVGEditBench: A Benchmark Dataset for Quantitative Assessment of LLM's SVG Editing Capabilities
- Title(参考訳): SVGEditBench: LLMのSVG編集能力の定量的評価のためのベンチマークデータセット
- Authors: Kunato Nishina, Yusuke Matsui,
- Abstract要約: 大規模言語モデルはSVGコードを直接処理することができる。
SVGEditBenchは、SVGコードの編集能力を評価するためのベンチマークである。
GPT-4はGPT-3.5よりも定量的にも質的にも優れた性能を示した。
- 参考スコア(独自算出の注目度): 12.555117983678624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image models have shown progress in recent years. Along with this progress, generating vector graphics from text has also advanced. SVG is a popular format for vector graphics, and SVG represents a scene with XML text. Therefore, Large Language Models can directly process SVG code. Taking this into account, we focused on editing SVG with LLMs. For quantitative evaluation of LLMs' ability to edit SVG, we propose SVGEditBench. SVGEditBench is a benchmark for assessing the LLMs' ability to edit SVG code. We also show the GPT-4 and GPT-3.5 results when evaluated on the proposed benchmark. In the experiments, GPT-4 showed superior performance to GPT-3.5 both quantitatively and qualitatively. The dataset is available at https://github.com/mti-lab/SVGEditBench.
- Abstract(参考訳): テキスト・ツー・イメージ・モデルは近年進歩している。
この進歩に伴い、テキストからベクトルグラフィックスを生成する方法も進歩した。
SVGはベクトルグラフィックスの一般的なフォーマットであり、SVGはXMLテキストでシーンを表す。
したがって、大規模言語モデルはSVGコードを直接処理することができる。
これを考慮し,SVG を LLM で編集することに焦点をあてた。
LLMのSVG編集能力の定量的評価のために,SVGEditBenchを提案する。
SVGEditBenchは、SVGコードの編集能力を評価するためのベンチマークである。
また,GPT-4 と GPT-3.5 の結果をベンチマークで評価した。
実験では, GPT-4はGPT-3.5よりも定量的および定性的に優れた性能を示した。
データセットはhttps://github.com/mti-lab/SVGEditBench.comで公開されている。
関連論文リスト
- NeuralSVG: An Implicit Representation for Text-to-Vector Generation [54.4153300455889]
本稿では,テキストプロンプトからベクトルグラフィックスを生成する暗黙的なニューラル表現であるNeuralSVGを提案する。
生成したSVGの層構造を促進するために,ドロップアウトに基づく正規化手法を導入する。
ニューラルSVGは、構造化された柔軟なSVGを生成する際に、既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-01-07T18:50:06Z) - SVGBuilder: Component-Based Colored SVG Generation with Text-Guided Autoregressive Transformers [5.921625661186367]
本稿では,テキスト入力から高品質な色付きSVGを生成するためのコンポーネントベース自動回帰モデルを提案する。
計算オーバーヘッドを大幅に削減し、従来の方法に比べて効率を向上する。
既存のSVGデータセットの限界に対処し、我々の研究を支援するために、カラーSVGの最初の大規模データセットであるColorSVG-100Kを紹介する。
論文 参考訳(メタデータ) (2024-12-13T15:24:11Z) - SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion [32.01103570298614]
SVGFusionは、現実のSVGデータへのスケーリングが可能なテキストからSVGモデルである。
人気のあるText-to-Imageフレームワークを使って、ベクターグラフィックスのための連続的な潜伏空間を学習する。
品質と一般化性の向上を実現し、新たなSVGコンテンツ作成を実現する。
論文 参考訳(メタデータ) (2024-12-11T09:02:25Z) - StarVector: Generating Scalable Vector Graphics Code from Images and Text [15.32194071443065]
本稿では,SVG生成のための多モーダル大言語モデルであるStarを紹介する。
画像のセマンティクスを理解し、SVGプリミティブをコンパクトで正確な出力に使用することにより、画像ベクトル化を行う。
ベクトル化タスク間の一般化を可能にする2Mサンプルの多種多様なデータセットであるStarStackをトレーニングする。
論文 参考訳(メタデータ) (2023-12-17T08:07:32Z) - Beyond Pixels: Exploring Human-Readable SVG Generation for Simple Images
with Vision Language Models [19.145503353922038]
本稿では,Simple-SVG-Generation (Stextsuperscript2VGtextsuperscript2)を提案する。
本手法は,正確かつ簡便なSVGの生成と,人間の可読性と理解の整合性に重点を置いている。
その結果,従来のSVG生成手法よりも明らかに改善された結果が得られた。
論文 参考訳(メタデータ) (2023-11-27T05:20:11Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
画像の画素表現に基づいて訓練されたテキスト条件付き拡散モデルを用いて,SVG-exportable vector graphicsを生成する。
近年のテキスト・ツー・3D研究に触発されて,Score Distillation Smpling を用いたキャプションと整合したSVGを学習した。
実験では、以前の作品よりも品質が向上し、ピクセルアートやスケッチを含む様々なスタイルが示されている。
論文 参考訳(メタデータ) (2022-11-21T10:04:27Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
画像をSVGに変換し,画像トポロジを同時に維持するためのレイヤワイズ画像ベクトル化(LIVE)を提案する。
Liveは、人間の視点にセマンティックに整合した階層構造を持つコンパクトなフォームを生成する。
Liveは、デザイナの両方のために編集可能なSVGを起動し、他のアプリケーションで使用することができる。
論文 参考訳(メタデータ) (2022-06-09T17:55:02Z) - SVG-Net: An SVG-based Trajectory Prediction Model [67.68864911674308]
シーン内の車両の動きを予想することは、安全な自動運転システムにとって重要な問題である。
この目的のために、シーンのインフラの理解は、しばしば将来の軌跡を予測する主要な手がかりである。
提案手法のほとんどが逆逆変換方式のシーンを表現しており、近年のアプローチではカスタムベクトル化方式が採用されている。
論文 参考訳(メタデータ) (2021-10-07T18:00:08Z) - DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation [217.86315551526235]
本稿では,複雑なSVGアイコンの生成と操作のために,DeepSVGと呼ばれる新しい階層型生成ネットワークを提案する。
我々のアーキテクチャは、その形状自体をエンコードする低レベルのコマンドから、効果的に高レベルの形状を分離します。
我々のネットワークは、多様なベクトルグラフィックスを正確に再構築し、強力なアニメーションツールとして機能することを実証する。
論文 参考訳(メタデータ) (2020-07-22T09:36:31Z) - Kernel Stein Generative Modeling [68.03537693810972]
グラディエント・ランゲヴィン・ダイナミクス(SGLD)は高次元および複雑なデータ分布に関するエネルギーモデルによる印象的な結果を示す。
Stein Variational Gradient Descent (SVGD) は、与えられた分布を近似するために一組の粒子を反復的に輸送する決定論的サンプリングアルゴリズムである。
雑音条件付きカーネルSVGD(NCK-SVGD)を提案する。
論文 参考訳(メタデータ) (2020-07-06T21:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。