論文の概要: MARIO Eval: Evaluate Your Math LLM with your Math LLM--A mathematical dataset evaluation toolkit
- arxiv url: http://arxiv.org/abs/2404.13925v1
- Date: Mon, 22 Apr 2024 07:03:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:55:25.901577
- Title: MARIO Eval: Evaluate Your Math LLM with your Math LLM--A mathematical dataset evaluation toolkit
- Title(参考訳): MARIO Eval:Evaluate your Math LLM with your Math LLM--数学データセット評価ツールキット
- Authors: Boning Zhang, Chengxi Li, Kai Fan,
- Abstract要約: 大規模言語モデル (LLM) は数学的問題の解法を含む様々な推論タスクにおいて研究されている。
我々は,ピソン型計算機代数システム(CAS)をその数値精度に活用するだけでなく,オプションのLCMも組み込んだ総合的な数学的評価ツールキットを提案する。
- 参考スコア(独自算出の注目度): 4.957099360745168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have been explored in a variety of reasoning tasks including solving of mathematical problems. Each math dataset typically includes its own specially designed evaluation script, which, while suitable for its intended use, lacks generalizability across different datasets. Consequently, updates and adaptations to these evaluation tools tend to occur without being systematically reported, leading to inconsistencies and obstacles to fair comparison across studies. To bridge this gap, we introduce a comprehensive mathematical evaluation toolkit that not only utilizes a python computer algebra system (CAS) for its numerical accuracy, but also integrates an optional LLM, known for its considerable natural language processing capabilities. To validate the effectiveness of our toolkit, we manually annotated two distinct datasets. Our experiments demonstrate that the toolkit yields more robust evaluation results compared to prior works, even without an LLM. Furthermore, when an LLM is incorporated, there is a notable enhancement. The code for our method will be made available at \url{https://github.com/MARIO-Math-Reasoning/math_evaluation}.
- Abstract(参考訳): 大規模言語モデル (LLM) は数学的問題の解法を含む様々な推論タスクにおいて研究されている。
各数学データセットは、通常、独自の特別に設計された評価スクリプトを含むが、意図された用途に適合するが、異なるデータセット間での一般化性に欠ける。
その結果、これらの評価ツールの更新と適応は、体系的に報告されることなく起こる傾向にあり、不整合や障害が研究全体で公平に比較される。
このギャップを埋めるために、我々は、ピソン計算機代数システム(CAS)をその数値精度に活用するだけでなく、その相当な自然言語処理能力で知られているオプションのLLMを統合する、包括的な数学的評価ツールキットを導入する。
ツールキットの有効性を検証するため、2つの異なるデータセットを手動でアノテートした。
実験により, LLMを使わずとも, 従来よりも頑健な評価結果が得られることを示した。
さらに、LDMが組み込まれた場合、顕著な拡張がある。
我々のメソッドのコードは \url{https://github.com/MARIO-Math-Reasoning/math_evaluation} で利用可能になる。
関連論文リスト
- ReasonAgain: Using Extractable Symbolic Programs to Evaluate Mathematical Reasoning [54.70811660561151]
既存の数学データセットは、最終回答または静的例から派生した中間推論ステップを用いて、大規模言語モデル(LLM)の推論能力を評価する。
モデルがプログラムへの様々な入力に対して常に正しい最終回答を生成できる場合、シンボルプログラムを自動評価の手段として利用したいと考えている。
提案手法は, 従来の静的な例と比較して, 精度の低下を観測し, 現状のLLMにおける数学推論の脆弱さを示唆する。
論文 参考訳(メタデータ) (2024-10-24T18:02:37Z) - HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
本稿では,解析的近似技術を必要とする応用数学問題に挑戦するデータセットであるHARDMathを紹介する。
本フレームワークは,数値基底真理に対して検証された解を用いて,多数の問題を自動生成する。
HARDMath-miniは,366問題からなるサブサンプルテストセットであり,応用科学の文脈で定式化された40の単語問題に対して,オープンソースLLMとクローズドソースLLMの両方を評価する。
論文 参考訳(メタデータ) (2024-10-13T20:09:41Z) - ChatGLM-Math: Improving Math Problem-Solving in Large Language Models with a Self-Critique Pipeline [42.61538071832468]
大規模言語モデル(LLM)は、人間の言語の優れた習得を示すが、数学的な問題解決を必要とする現実世界のアプリケーションでは依然として苦戦している。
LLMアライメントのフィードバック学習段階における課題に対処する自己批判パイプラインを調整します。
論文 参考訳(メタデータ) (2024-04-03T17:51:18Z) - MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems? [99.0305256706604]
MLLMの公平かつ詳細な評価のために設計された全周視覚数学ベンチマークであるMathVerseを紹介する。
我々は,2,612の高品位・多目的数学問題を,公開情報源の図を用いて慎重に収集する。
このアプローチにより、MathVerseは、数学的推論のためのビジュアルダイアグラムを、どの程度のMLLMが真に理解できるかを包括的に評価することができる。
論文 参考訳(メタデータ) (2024-03-21T17:59:50Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning [2.9104279358536647]
数学的推論のためのツール強化された大規模言語モデルであるMathSenseiを提案する。
ツールの補完的な利点として、知識検索(Bing Web Search)、プログラムジェネレータ+エグゼキュータ(Python)、記号方程式ソルバ(Wolfram-Alpha API)について検討する。
論文 参考訳(メタデータ) (2024-02-27T05:50:35Z) - User Centric Evaluation of Code Generation Tools [2.8115477071897788]
本稿では,大規模言語モデル(LLM)のユーザビリティを評価するために,ユーザ中心の手法を提案する。
ベンチマークのテストケースにメタデータが含まれており、その使用を記述し、LLMの使用を模倣する多段階的なプロセスでテストを実行し、ユーザビリティを反映した品質属性セットに基づいてLLM生成ソリューションを測定し、ツールとしてLLMを使用する際のユーザエクスペリエンスに基づいたパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-02-05T15:56:19Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraToolは、ツール利用におけるLarge Language Modelsの能力を改善し評価するために設計された、新しいベンチマークである。
現実の複雑さを強調し、効果的な問題解決のために正確で多段階の計画を必要とする。
UltraToolの重要な特徴は、ツールの使用前に発生する自然言語による計画の独立した評価である。
論文 参考訳(メタデータ) (2024-01-30T16:52:56Z) - MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible
Pipeline [12.186691561822256]
我々は,大規模言語モデル(LLM)の本質的な性質が,数学的推論のモデル化における課題を提起していると仮定する。
本稿では,Pythonコードインタプリタを利用した新しい数学データセットを提案する。
本稿では,数学固有のLLMの微調整のための仮的かつ容易に複製可能なプロトコルを提案する。
論文 参考訳(メタデータ) (2024-01-16T08:08:01Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
CoT(Chain-of- Thought prompting)とツール拡張は、大きな言語モデルを改善するための効果的なプラクティスとして検証されている。
ツールインターフェース,すなわち textbfDELI を用いた推論ステップを考慮に入れた新しい手法を提案する。
CARPと他の6つのデータセットの実験結果から、提案されたDELIは、主に競合ベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-06-04T17:02:59Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
大型言語モデル(LLM)と対話し,評価するためのプロトタイププラットフォームであるCheckMateを紹介した。
我々はCheckMateと共同で3つの言語モデル(InstructGPT, ChatGPT, GPT-4)を、学部レベルの数学の証明支援として評価する研究を行った。
我々は、人間の行動の分類を導き、概して肯定的な相関にもかかわらず、正しさと知覚的有用性の間に顕著な相違点があることを明らかにする。
論文 参考訳(メタデータ) (2023-06-02T17:12:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。