論文の概要: Graph Coloring Using Heat Diffusion
- arxiv url: http://arxiv.org/abs/2404.14457v1
- Date: Sun, 21 Apr 2024 15:00:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 18:07:28.899637
- Title: Graph Coloring Using Heat Diffusion
- Title(参考訳): 熱拡散を利用したグラフカラー化
- Authors: Vivek Chaudhary,
- Abstract要約: 本稿では,熱拡散フレームワークを用いたグラフカラー化問題の解法を提案する。
一般的な手法と比較し,グラフカラー化問題に対する熱拡散法の競争力を確立する。
- 参考スコア(独自算出の注目度): 5.22145960878624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph coloring is a problem with varied applications in industry and science such as scheduling, resource allocation, and circuit design. The purpose of this paper is to establish if a new gradient based iterative solver framework known as heat diffusion can solve the graph coloring problem. We propose a solution to the graph coloring problem using the heat diffusion framework. We compare the solutions against popular methods and establish the competitiveness of heat diffusion method for the graph coloring problem.
- Abstract(参考訳): グラフカラー化は、スケジューリング、リソース割り当て、回路設計など、産業や科学における様々な応用における問題である。
本研究の目的は,熱拡散と呼ばれる新しい勾配に基づく反復解法フレームワークが,グラフ着色問題を解くことができるかどうかを確かめることである。
本稿では,熱拡散フレームワークを用いたグラフカラー化問題の解法を提案する。
一般的な手法と比較し,グラフカラー化問題に対する熱拡散法の競争力を確立する。
関連論文リスト
- Fast Semi-supervised Learning on Large Graphs: An Improved Green-function Method [93.04936336359502]
グラフに基づく半教師付き学習において、グリーン関数法はグラフ空間におけるグリーン関数の計算によって機能する古典的な方法である。
そこで本研究では,最適化の観点から詳細な解析を行い,新しい手法を提案する。
従来の手法とは異なり,改良手法ではガウス除去法とアンコレッドグラフ法という2つの高速化手法を適用できる。
論文 参考訳(メタデータ) (2024-11-04T04:27:18Z) - Efficient Graph Coloring with Neural Networks: A Physics-Inspired Approach for Large Graphs [0.0]
本稿では,特に大規模グラフにおいて,グラフニューラルネットワークを有効活用する新しいアルゴリズムを提案する。
本稿では,Erdos-Renyiグラフのデータセット上での手法の有効性を実証し,その適用性を示す。
論文 参考訳(メタデータ) (2024-08-02T18:02:51Z) - Fine color guidance in diffusion models and its application to image compression at extremely low bitrates [9.17424462858218]
本研究では,拡散モデルを用いて生成した画像のグローバルな色相を,トレーニングや微調整なしで制御することの課題に対処する。
出力が既知のカラーマップに近いことを保証するため、誘導方程式を書き換えるが、これは生成の質を損なうことはない。
論文 参考訳(メタデータ) (2024-04-10T09:45:02Z) - Generating a Graph Colouring Heuristic with Deep Q-Learning and Graph
Neural Networks [5.620334754517149]
本稿では,グラフカラー化の競争的構築を見つけるために,深層強化学習が有効かどうかを検討する。
提案手法であるReLColでは,深層Q-ラーニングとグラフニューラルネットワークを用いて特徴抽出を行う。
グラフカラー化問題のさらなる研究には,強化学習が有望な方向であることを実証する。
論文 参考訳(メタデータ) (2023-04-08T15:41:01Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Graph Coloring with Physics-Inspired Graph Neural Networks [0.0]
正準グラフ着色問題の解法としてグラフニューラルネットワークを用いる方法を示す。
マルチクラスノード分類問題としてグラフカラー化を行い,教師なし学習戦略を利用する。
論文 参考訳(メタデータ) (2022-02-03T14:24:12Z) - Multilayer Graph Clustering with Optimized Node Embedding [70.1053472751897]
多層グラフクラスタリングは、グラフノードをカテゴリまたはコミュニティに分割することを目指しています。
与えられた多層グラフの層をクラスタリングに親しみやすい埋め込みを提案する。
実験の結果,本手法は著しい改善をもたらすことがわかった。
論文 参考訳(メタデータ) (2021-03-30T17:36:40Z) - Fusion Moves for Graph Matching [35.27002115682325]
グラフマッチングとしても知られる二次代入問題に対する近似アルゴリズムに寄与する。
マルチラベル離散マルコフ確率場のための融合移動法の成功に触発され,グラフマッチングへの適用性を検討した。
本稿では,ラグランジュ二元法と効率的に組み合わせる方法について述べる。
論文 参考訳(メタデータ) (2021-01-28T16:09:46Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。