論文の概要: Integrating Heterogeneous Gene Expression Data through Knowledge Graphs for Improving Diabetes Prediction
- arxiv url: http://arxiv.org/abs/2404.14970v1
- Date: Tue, 23 Apr 2024 12:24:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 14:11:34.413891
- Title: Integrating Heterogeneous Gene Expression Data through Knowledge Graphs for Improving Diabetes Prediction
- Title(参考訳): 糖尿病予測のための知識グラフによる不均一遺伝子発現データの統合
- Authors: Rita T. Sousa, Heiko Paulheim,
- Abstract要約: 本稿では、複数の遺伝子発現データセットとドメイン固有の知識を統合する新しいアプローチを提案する。
その後、KG埋め込み法を使用してベクトル表現を生成し、分類器の入力として機能する。
- 参考スコア(独自算出の注目度): 1.8722948221596285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetes is a worldwide health issue affecting millions of people. Machine learning methods have shown promising results in improving diabetes prediction, particularly through the analysis of diverse data types, namely gene expression data. While gene expression data can provide valuable insights, challenges arise from the fact that the sample sizes in expression datasets are usually limited, and the data from different datasets with different gene expressions cannot be easily combined. This work proposes a novel approach to address these challenges by integrating multiple gene expression datasets and domain-specific knowledge using knowledge graphs, a unique tool for biomedical data integration. KG embedding methods are then employed to generate vector representations, serving as inputs for a classifier. Experiments demonstrated the efficacy of our approach, revealing improvements in diabetes prediction when integrating multiple gene expression datasets and domain-specific knowledge about protein functions and interactions.
- Abstract(参考訳): 糖尿病は世界中の何百万人もの人々の健康問題である。
機械学習の手法は糖尿病予測の改善に有望な結果を示しており、特に遺伝子発現データなど多種多様なデータ型の分析による。
遺伝子発現データは貴重な洞察を提供することができるが、表現データセットのサンプルサイズは通常制限されており、異なる遺伝子発現を持つ異なるデータセットからのデータが簡単に結合できないという事実から課題が生じる。
バイオメディカルデータ統合のためのユニークなツールである知識グラフを用いて、複数の遺伝子発現データセットとドメイン固有の知識を統合することにより、これらの課題に対処する新しいアプローチを提案する。
その後、KG埋め込み法を使用してベクトル表現を生成し、分類器の入力として機能する。
実験により,複数の遺伝子発現データセットとドメイン固有のタンパク質機能や相互作用に関する知識を統合することで,糖尿病予測の改善が示された。
関連論文リスト
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
本稿では,遺伝子・遺伝子相互作用の探索に先進的なトランスフォーマーモデルを活用する,データ駆動型計算ツールを活用した革新的なアプローチを提案する。
新たな重み付き多様化サンプリングアルゴリズムは、データセットのたった2パスで、各データサンプルの多様性スコアを算出する。
論文 参考訳(メタデータ) (2024-10-21T03:35:23Z) - Robust Multi-view Co-expression Network Inference [8.697303234009528]
トランスクリプトームデータから遺伝子共発現ネットワークを推定することは、多くの課題をもたらす。
複数の独立研究から高次元グラフ推論のためのロバストな手法を提案する。
論文 参考訳(メタデータ) (2024-09-30T06:30:09Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - SimpleChrome: Encoding of Combinatorial Effects for Predicting Gene
Expression [8.326669256957352]
遺伝子のヒストン修飾表現を学習するディープラーニングモデルであるSimpleChromeを紹介します。
このモデルから得られた特徴により、遺伝子間相互作用の潜在効果と標的遺伝子の発現に対する直接遺伝子調節をよりよく理解することができます。
論文 参考訳(メタデータ) (2020-12-15T23:30:36Z) - Using ontology embeddings for structural inductive bias in gene
expression data analysis [6.587739898387445]
がん患者の遺伝子発現レベルに基づいて、診断、生存分析、治療計画を改善することができる。
本稿では,遺伝子発現データから患者の分類作業を行う機械学習システムに,遺伝子に関する生物学的知識を取り入れることを提案する。
論文 参考訳(メタデータ) (2020-11-22T12:13:29Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Semi-Supervised Generative Adversarial Network for Prediction of
Genetic Disease Outcomes [0.0]
本稿では, 遺伝的な遺伝的データセットを作成するために, gGAN (Generative Adversarial Networks) を導入する。
我々のゴールは、遺伝子プロファイルだけで病気の重篤な形態を発達させる新しい個人の正当性を決定することである。
提案モデルは自己認識型であり、ネットワークがトレーニングされたデータと十分に互換性のある新しい遺伝子プロファイルを決定することができる。
論文 参考訳(メタデータ) (2020-07-02T15:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。