論文の概要: Identifying phase transitions in physical systems with neural networks: a neural architecture search perspective
- arxiv url: http://arxiv.org/abs/2404.15118v1
- Date: Tue, 23 Apr 2024 15:16:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 13:32:19.101660
- Title: Identifying phase transitions in physical systems with neural networks: a neural architecture search perspective
- Title(参考訳): ニューラルネットワークを用いた物理系における相転移の同定--ニューラルアーキテクチャ探索の観点から
- Authors: Rodrigo Carmo Terin, Zochil González Arenas, Roberto Santana,
- Abstract要約: 本稿では,位相情報に対するニューラルネットワークの精度とネットワーク構成との関係を初めて検討する。
我々は、ニューロンカバレッジメトリクスを用いて、スマートなデータ処理と分析を実装し、フェーズ遷移を推定するこれらのメトリクスの能力を評価する。
- 参考スコア(独自算出の注目度): 1.3927943269211593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of machine learning algorithms to investigate phase transitions in physical systems is a valuable way to better understand the characteristics of these systems. Neural networks have been used to extract information of phases and phase transitions directly from many-body configurations. However, one limitation of neural networks is that they require the definition of the model architecture and parameters previous to their application, and such determination is itself a difficult problem. In this paper, we investigate for the first time the relationship between the accuracy of neural networks for information of phases and the network configuration (that comprises the architecture and hyperparameters). We formulate the phase analysis as a regression task, address the question of generating data that reflects the different states of the physical system, and evaluate the performance of neural architecture search for this task. After obtaining the optimized architectures, we further implement smart data processing and analytics by means of neuron coverage metrics, assessing the capability of these metrics to estimate phase transitions. Our results identify the neuron coverage metric as promising for detecting phase transitions in physical systems.
- Abstract(参考訳): 物理系における位相遷移を研究するための機械学習アルゴリズムの利用は、これらの系の特徴をよりよく理解するための貴重な方法である。
ニューラルネットワークは、多体構成から直接相転移や相転移の情報を取り出すために使われてきた。
しかしながら、ニューラルネットワークの1つの制限は、それらがアプリケーションに先行するモデルアーキテクチャとパラメータの定義を必要とすることであり、そのような決定はそれ自体が難しい問題である。
本稿では,位相情報に対するニューラルネットワークの精度とネットワーク構成(アーキテクチャとハイパーパラメータを含む)との関係を初めて検討する。
本稿では、位相解析を回帰タスクとして定式化し、物理系の異なる状態を反映したデータ生成の問題に対処し、このタスクのニューラルネットワーク探索の性能を評価する。
最適化されたアーキテクチャを得た後、ニューロンカバレッジメトリクスを用いて、スマートなデータ処理と分析を実装し、フェーズ遷移を推定するこれらのメトリクスの能力を評価する。
以上の結果から, ニューロンのカバレッジ測定は, 物理系における相転移の検出に有望であると考えられた。
関連論文リスト
- Data-Driven Fire Modeling: Learning First Arrival Times and Model Parameters with Neural Networks [12.416949154231714]
火災科学における力学をパラメータ化するニューラルネットワークの能力について検討する。
特に,火災時の5つの重要なパラメータを最初の到着時刻までマッピングするニューラルネットワークについて検討する。
逆問題に対して、各キーパラメータを推定する際のネットワークの感度を定量化する。
論文 参考訳(メタデータ) (2024-08-16T19:54:41Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Fluctuation based interpretable analysis scheme for quantum many-body
snapshots [0.0]
物質の微視的理解と分類は、強相関量子物理学の中心にある。
ここでは、混乱学習と相関畳み込みニューラルネットワークを組み合わせることで、完全に解釈可能な位相検出を行う。
我々の研究は、解釈可能な量子画像処理における新しい方向を、長距離の順序に相応しいものに開放する。
論文 参考訳(メタデータ) (2023-04-12T17:59:59Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
マウス脳組織サンプルにおける脳領域の予測に対する神経オペレーターの適用の有効性を検証するために,様々なグラフニューラルネットワークアプローチを取り入れた研究を提案する。
グラフニューラルネットワークのアプローチでは,F1スコアが72%近く向上し,すべてのベースラインやグラフネットワークのアプローチを上回った。
論文 参考訳(メタデータ) (2023-02-01T18:32:06Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
入力パラメータのトレーニング可能な関数を用いて条件パラメトリゼーションの考え方を一般化する。
条件パラメータ化ネットワークは従来のネットワークに比べて優れた性能を示すことを示す。
CP-GNetと呼ばれるネットワークアーキテクチャも、メッシュ上のフローのスタンドアロン予測に反応可能な最初のディープラーニングモデルとして提案されている。
論文 参考訳(メタデータ) (2021-09-15T20:21:13Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。