CarbonClipper: Optimal Algorithms for Carbon-Aware Spatiotemporal Workload Management
- URL: http://arxiv.org/abs/2408.07831v1
- Date: Wed, 14 Aug 2024 22:08:06 GMT
- Title: CarbonClipper: Optimal Algorithms for Carbon-Aware Spatiotemporal Workload Management
- Authors: Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant Shenoy,
- Abstract summary: carbon-aware workload management seeks to address the growing environmental impact of data centers.
mathsfSOAD$ formalizes the open problem of combining general metrics and deadline constraints in the online algorithms.
rm Cscriptsize ARCscriptsize LIPPER$ is a learning-augmented algorithm that takes advantage predictions.
- Score: 11.029788598491077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study carbon-aware spatiotemporal workload management, which seeks to address the growing environmental impact of data centers. We formalize this as an online problem called spatiotemporal online allocation with deadline constraints ($\mathsf{SOAD}$), in which an online player completes a workload (e.g., a batch compute job) by moving and scheduling the workload across a network subject to a deadline $T$. At each time step, a service cost function is revealed, representing, e.g., the carbon intensity of servicing a workload at each location, and the player must irrevocably decide the current allocation. Furthermore, whenever the player moves the allocation, it incurs a movement cost defined by a metric space $(X,d)$ that captures, e.g., the overhead of migrating a compute job. $\mathsf{SOAD}$ formalizes the open problem of combining general metrics and deadline constraints in the online algorithms literature, unifying problems such as metrical task systems and online search. We propose a competitive algorithm for $\mathsf{SOAD}$ along with a matching lower bound that proves it is optimal. Our main algorithm, ${\rm C{\scriptsize ARBON}C{\scriptsize LIPPER}}$, is a learning-augmented algorithm that takes advantage of predictions (e.g., carbon intensity forecasts) and achieves an optimal consistency-robustness trade-off. We evaluate our proposed algorithms for carbon-aware spatiotemporal workload management on a simulated global data center network, showing that ${\rm C{\scriptsize ARBON}C{\scriptsize LIPPER}}$ significantly improves performance compared to baseline methods and delivers meaningful carbon reductions.
Related papers
- Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
We present a $textbfMA-OSMA$ algorithm to transfer the discrete submodular problem into a continuous optimization.
We also introduce a projection-free $textbfMA-OSEA$ algorithm, which effectively utilizes the KL divergence by mixing a uniform distribution.
Our algorithms significantly improve the $(frac11+c)$-approximation provided by the state-of-the-art OSG algorithm.
arXiv Detail & Related papers (2025-02-07T15:57:56Z) - Communication Efficient Decentralization for Smoothed Online Convex Optimization [9.449153668916098]
We study the multi-agent Smoothed Online Convex Optimization (SOCO) problem, where $N$ agents interact through a communication graph.
In each round, each agent $i$ receives a strongly convex hitting cost function $fi_t$ in an online fashion.
Our results hold even when the communication graph changes arbitrarily and adaptively over time.
arXiv Detail & Related papers (2024-11-13T05:59:04Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - On the Necessity of Collaboration for Online Model Selection with Decentralized Data [53.244188985271606]
We consider online model selection with decentralized data over $M$ clients, and study the necessity of collaboration among clients.
Our results show (i) collaboration is unnecessary in the absence of computational constraints on clients; (ii) collaboration is necessary if the computational cost on each client is limited to $o(K)$, where $K$ is the number of candidate hypothesis spaces.
arXiv Detail & Related papers (2024-04-15T06:32:28Z) - LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand [1.423958951481749]
This paper studies the online carbon-aware resource scaling problem with unknown job lengths (OCSU)
We propose LACS, a theoretically robust learning-augmented algorithm that solves OCSU.
LACS achieves a 32% reduction in carbon footprint compared to the deadline-aware carbon-agnostic execution of the job.
arXiv Detail & Related papers (2024-03-29T04:54:22Z) - Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization [9.449153668916098]
We study the smoothed online optimization (SOQO) problem where, at each round $t$, a player plays an action $x_t in response to a quadratic hitting cost and an additional squared $ell$-norm cost for switching actions.
This problem class has strong connections to a wide range of application domains including smart grid management, adaptive control, and data center management.
We present a best-of-both-worlds algorithm that obtains a robust adversarial performance while simultaneously achieving a near-optimal performance.
arXiv Detail & Related papers (2023-10-31T22:59:23Z) - Online Conversion with Switching Costs: Robust and Learning-Augmented Algorithms [11.029788598491077]
We study online conversion with switching costs, a family of online problems that capture emerging problems at the intersection of energy and sustainability.
We introduce competitive (robust) threshold-based algorithms for both the deterministic and deterministic variants of this problem.
We then propose learning-augmented algorithms that take advantage of black-box advice to achieve significantly better average-case performance.
arXiv Detail & Related papers (2023-10-31T16:34:49Z) - A Schedule of Duties in the Cloud Space Using a Modified Salp Swarm
Algorithm [0.0]
One of the most important NP-hard issues in the cloud domain is scheduling.
One of the collective intelligence algorithms, called the Salp Swarm Algorithm (SSA), has been expanded, improved, and applied.
Results show that our algorithm has generally higher performance than the other algorithms.
arXiv Detail & Related papers (2023-09-18T02:48:41Z) - Efficient Methods for Non-stationary Online Learning [67.3300478545554]
We present efficient methods for optimizing dynamic regret and adaptive regret, which reduce the number of projections per round from $mathcalO(log T)$ to $1$.
Our technique hinges on the reduction mechanism developed in parameter-free online learning and requires non-trivial twists on non-stationary online methods.
arXiv Detail & Related papers (2023-09-16T07:30:12Z) - TransPath: Learning Heuristics For Grid-Based Pathfinding via
Transformers [64.88759709443819]
We suggest learning the instance-dependent proxies that are supposed to notably increase the efficiency of the search.
The first proxy we suggest to learn is the correction factor, i.e. the ratio between the instance independent cost-to-go estimate and the perfect one.
The second proxy is the path probability, which indicates how likely the grid cell is lying on the shortest path.
arXiv Detail & Related papers (2022-12-22T14:26:11Z) - Movement Penalized Bayesian Optimization with Application to Wind Energy
Systems [84.7485307269572]
Contextual Bayesian optimization (CBO) is a powerful framework for sequential decision-making given side information.
In this setting, the learner receives context (e.g., weather conditions) at each round, and has to choose an action (e.g., turbine parameters)
Standard algorithms assume no cost for switching their decisions at every round, but in many practical applications, there is a cost associated with such changes, which should be minimized.
arXiv Detail & Related papers (2022-10-14T20:19:32Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Breaking the Linear Iteration Cost Barrier for Some Well-known
Conditional Gradient Methods Using MaxIP Data-structures [49.73889315176884]
Conditional gradient methods (CGM) are widely used in modern machine learning.
Most efforts focus on reducing the number of iterations as a means to reduce the overall running time.
We show the first algorithm, where the cost per iteration is sublinear in the number of parameters, for many fundamental optimization algorithms.
arXiv Detail & Related papers (2021-11-30T05:40:14Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Learning to Schedule [3.5408022972081685]
This paper proposes a learning and scheduling algorithm to minimize the expected cumulative holding cost incurred by jobs.
In each time slot, the server can process a job while receiving the realized random holding costs of the jobs remaining in the system.
arXiv Detail & Related papers (2021-05-28T08:04:06Z) - Online Apprenticeship Learning [58.45089581278177]
In Apprenticeship Learning (AL), we are given a Markov Decision Process (MDP) without access to the cost function.
The goal is to find a policy that matches the expert's performance on some predefined set of cost functions.
We show that the OAL problem can be effectively solved by combining two mirror descent based no-regret algorithms.
arXiv Detail & Related papers (2021-02-13T12:57:51Z) - Metrical Task Systems with Online Machine Learned Advice [0.0]
We show that augmenting online algorithms with a machine learned predictor can provably decrease the competitive ratio under as long as the predictor is suitably accurate.
We focus on the specific class of uniform task systems on $n$ tasks, for which the best deterministic algorithm is $O(n)$ competitive and the best randomized algorithm is $O(log n)$ competitive.
arXiv Detail & Related papers (2020-12-17T04:56:51Z) - APMSqueeze: A Communication Efficient Adam-Preconditioned Momentum SGD
Algorithm [39.110478306078974]
Adam is the important optimization algorithm to guarantee efficiency and accuracy for training many important tasks such as BERT and ImageNet.
We propose a communication efficient bf ADAM bf preconditioned bf Momentum SGD algorithm-- named APMSqueeze-- through an error compensated method compressing gradients.
arXiv Detail & Related papers (2020-08-26T02:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.