論文の概要: PHLP: Sole Persistent Homology for Link Prediction -- Interpretable Feature Extraction
- arxiv url: http://arxiv.org/abs/2404.15225v1
- Date: Tue, 23 Apr 2024 16:54:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 13:12:44.802226
- Title: PHLP: Sole Persistent Homology for Link Prediction -- Interpretable Feature Extraction
- Title(参考訳): PHLP: リンク予測のためのソレ永続ホモロジー -- 解釈可能な特徴抽出
- Authors: Junwon You, Eunwoo Heo, Jae-Hun Jung,
- Abstract要約: リンク予測(LP)はグラフデータにおいて重要な研究領域である。
グラフニューラルネットワーク(GNN)ベースのモデルはLPで高いパフォーマンスを達成したが、なぜうまく機能するのかを理解することは難しい。
対象リンクの有無が全体トポロジにどのように影響するかに着目し,PHLP(PHLP)を用いた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 2.8413459430736396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction (LP), inferring the connectivity between nodes, is a significant research area in graph data, where a link represents essential information on relationships between nodes. Although graph neural network (GNN)-based models have achieved high performance in LP, understanding why they perform well is challenging because most comprise complex neural networks. We employ persistent homology (PH), a topological data analysis method that helps analyze the topological information of graphs, to explain the reasons for the high performance. We propose a novel method that employs PH for LP (PHLP) focusing on how the presence or absence of target links influences the overall topology. The PHLP utilizes the angle hop subgraph and new node labeling called degree double radius node labeling (Degree DRNL), distinguishing the information of graphs better than DRNL. Using only a classifier, PHLP performs similarly to state-of-the-art (SOTA) models on most benchmark datasets. Incorporating the outputs calculated using PHLP into the existing GNN-based SOTA models improves performance across all benchmark datasets. To the best of our knowledge, PHLP is the first method of applying PH to LP without GNNs. The proposed approach, employing PH while not relying on neural networks, enables the identification of crucial factors for improving performance.
- Abstract(参考訳): ノード間の接続を推定するリンク予測(LP)は、ノード間の関係に関する重要な情報を表すリンクであるグラフデータにおいて重要な研究領域である。
グラフニューラルネットワーク(GNN)ベースのモデルはLPでは高いパフォーマンスを実現しているが、多くの場合は複雑なニューラルネットワークで構成されているため、うまく機能する理由を理解することは難しい。
我々は,グラフのトポロジ的情報解析を支援するトポロジ的データ解析手法である永続的ホモロジー(PH)を用いて,ハイパフォーマンスの原因を説明する。
対象リンクの有無が全体トポロジにどのように影響するかに着目し,PHLP(PHLP)を用いた新しい手法を提案する。
PHLPは、角度ホップサブグラフとDRNL(Dregree DRNL)と呼ばれる新しいノードラベリングを利用して、DRNLよりもグラフの情報を識別する。
PHLPは分類器のみを使用して、ほとんどのベンチマークデータセットの最先端(SOTA)モデルと同様に動作する。
PHLPを用いて計算した出力を既存のGNNベースのSOTAモデルに組み込むことで、すべてのベンチマークデータセットのパフォーマンスが向上する。
我々の知る限り、PHLP は GNN を使わずに PH を LP に適用する最初の方法である。
提案手法は、ニューラルネットワークを頼らずにPHを用いることで、性能向上のための重要な要因を特定することができる。
関連論文リスト
- Boosting Graph Pooling with Persistent Homology [8.477383770884508]
GNN層にPH機能を鼻で接続すると、解釈可能性の低い限界改善が得られる。
本研究では,PHの濾過操作が自然にグラフプーリングを切断的に整列させるという観察に動機づけられた,グローバルなトポロジ的不変性を PH を用いてプール層に注入する新しいメカニズムについて検討する。
実験では,この機構をグラフプーリング手法の集合に適用し,複数の一般的なデータセットに対して一貫した,実質的な性能向上を観察する。
論文 参考訳(メタデータ) (2024-02-26T07:00:24Z) - Going beyond persistent homology using persistent homology [5.724311218570011]
この重要な問題に対する完全な解決を提供するために、色分離集合という新しい概念を導入する。
グラフ上のトポロジ的特徴を学習するためのRePHINEを提案する。
論文 参考訳(メタデータ) (2023-11-10T16:12:35Z) - GPatcher: A Simple and Adaptive MLP Model for Alleviating Graph
Heterophily [15.93465948768545]
グラフニューラルネットワーク(GNN)フィルタにおけるグラフヘテロフィリーの影響を解明する。
我々は,パッチ・ミクサーアーキテクチャを利用したGPatcherというシンプルで強力なGNNを提案する。
本モデルでは, ノード分類において, 人気ホモフィリーGNNや最先端ヘテロフィリーGNNと比較して, 優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-25T20:57:35Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Cyclic Label Propagation for Graph Semi-supervised Learning [52.102251202186025]
本稿では,CycPropと呼ばれるグラフ半教師付き学習のための新しいフレームワークを提案する。
CycPropはGNNを周期的かつ相互に強化された方法でラベル伝播の過程に統合する。
特に,提案するCycPropでは,GNNモジュールが学習したノード埋め込みをラベル伝搬による拡張情報で更新する。
論文 参考訳(メタデータ) (2020-11-24T02:55:40Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Adaptive Universal Generalized PageRank Graph Neural Network [36.850433364139924]
グラフニューラルネットワーク(GNN)は、両方の証拠源を利用するように設計されている。
本稿では,GPR重みを適応的に学習する汎用PageRank (GPR) GNNアーキテクチャを提案する。
GPR-GNNは、合成データとベンチマークデータの両方の既存の技術と比較して、大幅な性能改善を提供する。
論文 参考訳(メタデータ) (2020-06-14T19:27:39Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
LPAとGCNの関係を特徴・ラベルの平滑化と特徴・ラベルの影響の2点の観点から検討した。
理論解析に基づいて,ノード分類のためのGCNとLCAを統一するエンドツーエンドモデルを提案する。
我々のモデルは、既存の特徴に基づく注目モデルよりもタスク指向のノードラベルに基づく学習注意重みと見なすこともできる。
論文 参考訳(メタデータ) (2020-02-17T03:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。