Elevating Spectral GNNs through Enhanced Band-pass Filter Approximation
- URL: http://arxiv.org/abs/2404.15354v1
- Date: Mon, 15 Apr 2024 11:35:32 GMT
- Title: Elevating Spectral GNNs through Enhanced Band-pass Filter Approximation
- Authors: Guoming Li, Jian Yang, Shangsong Liang, Dongsheng Luo,
- Abstract summary: We first show that poly-GNN with a better approximation for band-pass graph filters performs better on graph learning tasks.
This insight sheds light on critical issues of existing poly-GNNs, i.e., those poly-GNNs achieve trivial performance in approximating band-pass graph filters.
To tackle the issues, we propose a novel poly-GNN named TrigoNet, which achieves leading performance in approximating bandpass graph filters.
- Score: 26.79625547648669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectral Graph Neural Networks (GNNs) have attracted great attention due to their capacity to capture patterns in the frequency domains with essential graph filters. Polynomial-based ones (namely poly-GNNs), which approximately construct graph filters with conventional or rational polynomials, are routinely adopted in practice for their substantial performances on graph learning tasks. However, previous poly-GNNs aim at achieving overall lower approximation error on different types of filters, e.g., low-pass and high-pass, but ignore a key question: \textit{which type of filter warrants greater attention for poly-GNNs?} In this paper, we first show that poly-GNN with a better approximation for band-pass graph filters performs better on graph learning tasks. This insight further sheds light on critical issues of existing poly-GNNs, i.e., those poly-GNNs achieve trivial performance in approximating band-pass graph filters, hindering the great potential of poly-GNNs. To tackle the issues, we propose a novel poly-GNN named TrigoNet. TrigoNet constructs different graph filters with novel trigonometric polynomial, and achieves leading performance in approximating band-pass graph filters against other polynomials. By applying Taylor expansion and deserting nonlinearity, TrigoNet achieves noticeable efficiency among baselines. Extensive experiments show the advantages of TrigoNet in both accuracy performances and efficiency.
Related papers
- Large-Scale Spectral Graph Neural Networks via Laplacian Sparsification: Technical Report [21.288230563135055]
We propose a novel graph spectral sparsification method to approximate the propagation patterns of spectral Graph Neural Networks (GNNs)
Our method allows the application of linear layers on the input node features, enabling end-to-end training as well as the handling of raw features.
arXiv Detail & Related papers (2025-01-08T15:36:19Z) - ERGNN: Spectral Graph Neural Network With Explicitly-Optimized Rational Graph Filters [24.74425379853727]
This paper introduces a novel spectral graph neural network (ERGNN) with explicitly-optimized rational filter.
ERGNN adopts a unique two-step framework that sequentially applies the numerator filter and the denominator filter to the input signals.
Experiments validate the superiority of ERGNN over state-of-the-art methods, establishing it as a practical solution for deploying rational-based GNNs.
arXiv Detail & Related papers (2024-12-26T07:48:47Z) - Generalized Learning of Coefficients in Spectral Graph Convolutional Networks [5.5711773076846365]
Spectral Graph Convolutional Networks (GCNs) have gained popularity in graph machine learning applications.
G-Arnoldi-GCN consistently outperforms state-of-the-art methods when suitable functions are employed.
arXiv Detail & Related papers (2024-09-07T12:53:44Z) - GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet) is a novel graph neural network with theoretical support that provides a simple yet effective scheme for designing arbitrary graph spectral filters.
To the best of our knowledge, our work is the first to employ SSMs for the design of graph GNN spectral filters.
Extensive experiments on nine public benchmarks reveal that GrassNet achieves superior performance in real-world graph modeling tasks.
arXiv Detail & Related papers (2024-08-16T07:33:58Z) - Simple Multigraph Convolution Networks [49.19906483875984]
Existing multigraph convolution methods either ignore the cross-view interaction among multiple graphs, or induce extremely high computational cost due to standard cross-view operators.
This paper proposes a Simple Multi Convolution Networks (SMGCN) which first extracts consistent cross-view topology from multigraphs including edge-level and subgraph-level topology, then performs expansion based on raw multigraphs and consistent topologies.
In theory, SMGCN utilizes the consistent topologies in expansion rather than standard cross-view expansion, which performs credible cross-view spatial message-passing, and effectively reduces the complexity of standard expansion.
arXiv Detail & Related papers (2024-03-08T03:27:58Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - Specformer: Spectral Graph Neural Networks Meet Transformers [51.644312964537356]
Spectral graph neural networks (GNNs) learn graph representations via spectral-domain graph convolutions.
We introduce Specformer, which effectively encodes the set of all eigenvalues and performs self-attention in the spectral domain.
By stacking multiple Specformer layers, one can build a powerful spectral GNN.
arXiv Detail & Related papers (2023-03-02T07:36:23Z) - A Piece-wise Polynomial Filtering Approach for Graph Neural Networks [0.45298395481707365]
Graph Neural Networks (GNNs) exploit signals from node features and the input graph topology to improve node classification task performance.
These models tend to perform poorly on heterophilic graphs, where connected nodes have different labels.
We show that our model achieves performance gains of up to 5% over the state-of-theart models and outperforms existing filter-based approaches in general.
arXiv Detail & Related papers (2021-12-07T05:16:53Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Stacked Graph Filter [19.343260981528186]
We study Graph Convolutional Networks (GCN) from the graph signal processing viewpoint.
We find that by stacking graph filters with learnable solution parameters, we can build a highly adaptive and robust graph classification model.
arXiv Detail & Related papers (2020-11-22T11:20:14Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design.
We employ interpretable analytical low-pass graph filters and employ 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN.
arXiv Detail & Related papers (2020-10-21T20:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.