Infinite-Horizon Graph Filters: Leveraging Power Series to Enhance Sparse Information Aggregation
- URL: http://arxiv.org/abs/2401.09943v3
- Date: Fri, 19 Apr 2024 03:07:00 GMT
- Title: Infinite-Horizon Graph Filters: Leveraging Power Series to Enhance Sparse Information Aggregation
- Authors: Ruizhe Zhang, Xinke Jiang, Yuchen Fang, Jiayuan Luo, Yongxin Xu, Yichen Zhu, Xu Chu, Junfeng Zhao, Yasha Wang,
- Abstract summary: We propose a novel Graph Power Filter Neural Network (GPFN) that enhances node classification by employing a power series graph filter to augment the receptive field.
Our GPFN is a general framework that can integrate any power series and capture long-range dependencies.
- Score: 21.24445817935125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have shown considerable effectiveness in a variety of graph learning tasks, particularly those based on the message-passing approach in recent years. However, their performance is often constrained by a limited receptive field, a challenge that becomes more acute in the presence of sparse graphs. In light of the power series, which possesses infinite expansion capabilities, we propose a novel Graph Power Filter Neural Network (GPFN) that enhances node classification by employing a power series graph filter to augment the receptive field. Concretely, our GPFN designs a new way to build a graph filter with an infinite receptive field based on the convergence power series, which can be analyzed in the spectral and spatial domains. Besides, we theoretically prove that our GPFN is a general framework that can integrate any power series and capture long-range dependencies. Finally, experimental results on three datasets demonstrate the superiority of our GPFN over state-of-the-art baselines.
Related papers
- GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet) is a novel graph neural network with theoretical support that provides a simple yet effective scheme for designing arbitrary graph spectral filters.
To the best of our knowledge, our work is the first to employ SSMs for the design of graph GNN spectral filters.
Extensive experiments on nine public benchmarks reveal that GrassNet achieves superior performance in real-world graph modeling tasks.
arXiv Detail & Related papers (2024-08-16T07:33:58Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - Continuous Product Graph Neural Networks [5.703629317205571]
Multidomain data defined on multiple graphs holds significant potential in practical applications in computer science.
We introduce Continuous Product Graph Neural Networks (CITRUS) that emerge as a natural solution to the TPDEG.
We evaluate CITRUS on well-known traffic andtemporal weather forecasting datasets, demonstrating superior performance over existing approaches.
arXiv Detail & Related papers (2024-05-29T08:36:09Z) - Elevating Spectral GNNs through Enhanced Band-pass Filter Approximation [26.79625547648669]
We first show that poly-GNN with a better approximation for band-pass graph filters performs better on graph learning tasks.
This insight sheds light on critical issues of existing poly-GNNs, i.e., those poly-GNNs achieve trivial performance in approximating band-pass graph filters.
To tackle the issues, we propose a novel poly-GNN named TrigoNet, which achieves leading performance in approximating bandpass graph filters.
arXiv Detail & Related papers (2024-04-15T11:35:32Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
Graph neural networks (GNNs) are widely used for modelling graph-structured data in numerous applications.
Motivated by this limitation, we propose a GNN model with infinite depth, which we call Efficient Infinite-Depth Graph Neural Networks (EIGNN)
We show that EIGNN has a better ability to capture long-range dependencies than recent baselines, and consistently achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-02-22T08:16:58Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Adaptive Filters in Graph Convolutional Neural Networks [0.0]
Graph Neural Networks (GNN) have gained a high interest because of their potential in processing graph-structured data.
This paper presents a novel method to adapt the behaviour of a ConvGNN to the input proposing a method to perform spatial convolution on graphs.
arXiv Detail & Related papers (2021-05-21T14:36:39Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.