Uncertainty in latent representations of variational autoencoders optimized for visual tasks
- URL: http://arxiv.org/abs/2404.15390v1
- Date: Tue, 23 Apr 2024 16:26:29 GMT
- Title: Uncertainty in latent representations of variational autoencoders optimized for visual tasks
- Authors: Josefina Catoni, Enzo Ferrante, Diego H. Milone, Rodrigo Echeveste,
- Abstract summary: We study uncertainty representations in latent representations of variational auto-encoders (VAEs)
We show how a novel approach which we call explaining-away variational auto-encoders (EA-VAEs) fixes these issues.
EA-VAEs may prove useful both as models of perception in computational neuroscience and as inference tools in computer vision.
- Score: 4.919240908498475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning methods are increasingly becoming instrumental as modeling tools in computational neuroscience, employing optimality principles to build bridges between neural responses and perception or behavior. Developing models that adequately represent uncertainty is however challenging for deep learning methods, which often suffer from calibration problems. This constitutes a difficulty in particular when modeling cortical circuits in terms of Bayesian inference, beyond single point estimates such as the posterior mean or the maximum a posteriori. In this work we systematically studied uncertainty representations in latent representations of variational auto-encoders (VAEs), both in a perceptual task from natural images and in two other canonical tasks of computer vision, finding a poor alignment between uncertainty and informativeness or ambiguities in the images. We next showed how a novel approach which we call explaining-away variational auto-encoders (EA-VAEs), fixes these issues, producing meaningful reports of uncertainty in a variety of scenarios, including interpolation, image corruption, and even out-of-distribution detection. We show EA-VAEs may prove useful both as models of perception in computational neuroscience and as inference tools in computer vision.
Related papers
- Visual Analysis of Prediction Uncertainty in Neural Networks for Deep Image Synthesis [3.09988520562118]
It is imperative to comprehend the quality, confidence, robustness, and uncertainty associated with their prediction.
A thorough understanding of these quantities produces actionable insights that help application scientists make informed decisions.
This contribution demonstrates how the prediction uncertainty and sensitivity of DNNs can be estimated efficiently using various methods.
arXiv Detail & Related papers (2024-05-22T20:01:31Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - DiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering Classifier Differences Neuron Visualisations and Visual Counterfactual Explanations [35.458709912618176]
Deep learning has led to huge progress in complex image classification tasks like ImageNet, unexpected failure modes, e.g. via spurious features.
For safety-critical tasks the black-box nature of their decisions is problematic, and explanations or at least methods which make decisions plausible are needed urgently.
We address these problems by generating images that optimize a classifier-derived objective using a framework for guided image generation.
arXiv Detail & Related papers (2023-11-29T17:35:29Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
Uncertainty estimation is an important task for critical problems, such as robotics and autonomous driving.
We propose a Variational Neural Network-based version of a Voxel Pseudo Image Tracking (VPIT) method for 3D Single Object Tracking.
arXiv Detail & Related papers (2023-02-12T13:34:50Z) - Robustness and invariance properties of image classifiers [8.970032486260695]
Deep neural networks have achieved impressive results in many image classification tasks.
Deep networks are not robust to a large variety of semantic-preserving image modifications.
The poor robustness of image classifiers to small data distribution shifts raises serious concerns regarding their trustworthiness.
arXiv Detail & Related papers (2022-08-30T11:00:59Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner.
We demonstrate that our model is inherently sensitive to its uncertainty and adaptively balances balances to obtain accurate beliefs using minimum computational expense.
arXiv Detail & Related papers (2022-04-05T12:52:45Z) - Robustness in Deep Learning for Computer Vision: Mind the gap? [13.576376492050185]
We identify, analyze, and summarize current definitions and progress towards non-adversarial robustness in deep learning for computer vision.
We find that this area of research has received disproportionately little attention relative to adversarial machine learning.
arXiv Detail & Related papers (2021-12-01T16:42:38Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI Image
Quality [3.5480752735999417]
Quality control (QC) of medical images is essential to ensure that downstream analyses such as segmentation can be performed successfully.
We aim to automate the process by formulating a probabilistic network that estimates uncertainty through a heteroscedastic noise model.
We show models trained with simulated artefacts provide informative measures of uncertainty on real-world images and we validate our uncertainty predictions on problematic images identified by human-raters.
arXiv Detail & Related papers (2020-01-31T16:04:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.