Hybrid LLM/Rule-based Approaches to Business Insights Generation from Structured Data
- URL: http://arxiv.org/abs/2404.15604v1
- Date: Wed, 24 Apr 2024 02:42:24 GMT
- Title: Hybrid LLM/Rule-based Approaches to Business Insights Generation from Structured Data
- Authors: Aliaksei Vertsel, Mikhail Rumiantsau,
- Abstract summary: The ability to extract actionable insights from vast and varied datasets is essential for informed decision-making and maintaining a competitive edge.
Traditional rule-based systems, while reliable, often fall short when faced with the complexity and dynamism of modern business data.
This paper explores the efficacy of hybrid approaches that integrate the robustness of rule-based systems with the adaptive power of Large Language Models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of business data analysis, the ability to extract actionable insights from vast and varied datasets is essential for informed decision-making and maintaining a competitive edge. Traditional rule-based systems, while reliable, often fall short when faced with the complexity and dynamism of modern business data. Conversely, Artificial Intelligence (AI) models, particularly Large Language Models (LLMs), offer significant potential in pattern recognition and predictive analytics but can lack the precision necessary for specific business applications. This paper explores the efficacy of hybrid approaches that integrate the robustness of rule-based systems with the adaptive power of LLMs in generating actionable business insights.
Related papers
- From Machine Learning to Machine Unlearning: Complying with GDPR's Right to be Forgotten while Maintaining Business Value of Predictive Models [9.380866972744633]
This work develops a holistic machine learning-to-unlearning framework, called Ensemble-based iTerative Information Distillation (ETID)
ETID incorporates a new ensemble learning method to build an accurate predictive model that can facilitate handling data erasure requests.
We also introduce an innovative distillation-based unlearning method tailored to the constructed ensemble model to enable efficient and effective data erasure.
arXiv Detail & Related papers (2024-11-26T05:42:46Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Generalized Policy Learning for Smart Grids: FL TRPO Approach [6.058785372434129]
Federated Learning (FL) can train models on heterogeneous datasets while maintaining data privacy.
This paper introduces a framework that combines FL with a Trust Region Policy Optimization (FL TRPO) aiming to reduce energy-associated emissions and costs.
arXiv Detail & Related papers (2024-03-27T10:47:06Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies.
Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process.
We present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems.
arXiv Detail & Related papers (2024-02-04T07:59:06Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - FinGPT: Instruction Tuning Benchmark for Open-Source Large Language
Models in Financial Datasets [9.714447724811842]
This paper introduces a distinctive approach anchored in the Instruction Tuning paradigm for open-source large language models.
We capitalize on the interoperability of open-source models, ensuring a seamless and transparent integration.
The paper presents a benchmarking scheme designed for end-to-end training and testing, employing a cost-effective progression.
arXiv Detail & Related papers (2023-10-07T12:52:58Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Large Process Models: Business Process Management in the Age of
Generative AI [4.249492423406116]
Large Process Model (LPM) combines correlation power of Large Language Models with analytical precision and reliability of knowledge-based systems and automated reasoning approaches.
LPM would allow organizations to receive context-specific (tailored) process and other business models, analytical deep-dives, and improvement recommendations.
arXiv Detail & Related papers (2023-09-02T10:32:53Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.