論文の概要: M3D: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition
- arxiv url: http://arxiv.org/abs/2404.15615v2
- Date: Sat, 25 Jan 2025 09:51:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 21:57:03.214636
- Title: M3D: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition
- Title(参考訳): M3D: クロスオブジェクトおよびクロスセッション脳波を用いた感情認識における非深度伝達学習のための動的分布を用いたマニフォールド型ドメイン適応
- Authors: Ting Luo, Jing Zhang, Yingwei Qiu, Li Zhang, Yaohua Hu, Zhuliang Yu, Zhen Liang,
- Abstract要約: 本稿では,M3D(Manifold-based Domain Adaptation with Dynamic Distribution)を提案する。
M3Dは、多様体特徴変換、動的分布アライメント、分類器学習、アンサンブル学習の4つの重要なモジュールで構成されている。
実験の結果,M3Dは平均4.47%の精度で従来の非深度学習法より優れていた。
- 参考スコア(独自算出の注目度): 11.252832459891566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion decoding using Electroencephalography (EEG)-based affective brain-computer interfaces (aBCIs) plays a crucial role in affective computing but is limited by challenges such as EEG's non-stationarity, individual variability, and the high cost of large labeled datasets. While deep learning methods are effective, they require extensive computational resources and large data volumes, limiting their practical application. To overcome these issues, we propose Manifold-based Domain Adaptation with Dynamic Distribution (M3D), a lightweight, non-deep transfer learning framework. M3D consists of four key modules: manifold feature transformation, dynamic distribution alignment, classifier learning, and ensemble learning. The data is mapped to an optimal Grassmann manifold space, enabling dynamic alignment of source and target domains. This alignment is designed to prioritize both marginal and conditional distributions, improving adaptation efficiency across diverse datasets. In classifier learning, the principle of structural risk minimization is applied to build robust classification models. Additionally, dynamic distribution alignment iteratively refines the classifier. The ensemble learning module aggregates classifiers from different optimization stages to leverage diversity and enhance prediction accuracy. M3D is evaluated on two EEG emotion recognition datasets using two validation protocols (cross-subject single-session and cross-subject cross-session) and a clinical EEG dataset for Major Depressive Disorder (MDD). Experimental results show that M3D outperforms traditional non-deep learning methods with a 4.47% average improvement and achieves deep learning-level performance with reduced data and computational requirements, demonstrating its potential for real-world aBCI applications.
- Abstract(参考訳): 脳波(EEG)に基づく感情脳コンピューターインタフェース(aBCI)を用いた感情デコーディングは、感情コンピューティングにおいて重要な役割を果たすが、脳波の非定常性、個人変動性、大規模ラベル付きデータセットの高コストといった課題によって制限されている。
ディープラーニングの手法は有効であるが、計算資源と大量のデータを必要とするため、実用的応用は限られている。
これらの問題を克服するために,我々は,軽量で非深層移動学習フレームワークであるManifold-based Domain Adaptation with Dynamic Distribution (M3D)を提案する。
M3Dは、多様体特徴変換、動的分布アライメント、分類器学習、アンサンブル学習の4つの重要なモジュールで構成されている。
データは最適グラスマン多様体空間にマッピングされ、ソース領域とターゲット領域の動的アライメントを可能にする。
このアライメントは、限界分布と条件分布の両方を優先し、多様なデータセット間の適応効率を改善するように設計されている。
分類器学習では、構造的リスク最小化の原理を頑健な分類モデルの構築に適用する。
さらに、動的分布アライメントは分類器を反復的に洗練する。
アンサンブル学習モジュールは、様々な最適化段階から分類器を集約し、多様性を活用し、予測精度を高める。
M3Dは2つの検証プロトコル(クロスオブジェクト・シングルセッションとクロスオブジェクト・クロスセッション)と、メジャーうつ病のための臨床脳波データセット(MDD)を用いて2つの脳波感情認識データセットで評価される。
実験結果から,M3Dは従来の非深層学習法よりも平均4.47%向上し,データと計算要求を低減した深層学習性能を実現し,実世界のABCIアプリケーションの可能性を示した。
関連論文リスト
- Leveraging Labelled Data Knowledge: A Cooperative Rectification Learning Network for Semi-supervised 3D Medical Image Segmentation [27.94353306813293]
半教師付き3次元医用画像セグメンテーションは,少ないラベル付きデータと多数の非ラベル付きデータを用いて正確なセグメンテーションを実現することを目的としている。
半教師付き学習法の設計における主な課題は、学習に未学習データを効果的に活用することである。
一貫性学習戦略のための高品質な擬似ラベルを作成するための新しい手法を提案する。
論文 参考訳(メタデータ) (2025-02-17T05:29:50Z) - Dual Prototyping with Domain and Class Prototypes for Affective Brain-Computer Interface in Unseen Target Conditions [29.16210966872911]
脳波信号は感情的脳とコンピュータのインターフェースにおいて強力なツールとして登場し、感情認識において重要な役割を担っている。
モデル学習におけるソースデータとターゲットデータの両方に依存するため,脳波認識のための最新のディープトランスファー学習手法が課題に直面している。
本稿では,新しいフレームワーク(PL-DCP)を提案する。
PL-DCPはトレーニング中にソースデータのみを運用する。
論文 参考訳(メタデータ) (2024-11-27T00:56:43Z) - DAAL: Density-Aware Adaptive Line Margin Loss for Multi-Modal Deep Metric Learning [1.9472493183927981]
本稿では,DAAL(Dedentity-Aware Adaptive Margin Loss)と呼ばれる新しい損失関数を提案する。
DAALは、各クラス内の適応サブクラスタの形成を奨励しながら、埋め込みの密度分布を保存する。
ベンチマークによるきめ細かいデータセットの実験は、DAALの優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-07T19:04:24Z) - Adaptive Meta-Domain Transfer Learning (AMDTL): A Novel Approach for Knowledge Transfer in AI [0.0]
AMDTLは、ドメインのミスアライメント、負の転送、破滅的な忘れなど、トランスファーラーニングの主な課題に対処することを目的としている。
このフレームワークは、タスクの多様な分散に訓練されたメタラーナー、ドメインの特徴分布を整合させる敵のトレーニング技術、動的特徴制御機構を統合している。
ベンチマークデータセットによる実験結果から,AMDTLは既存の移動学習手法よりも精度,適応効率,堅牢性に優れていた。
論文 参考訳(メタデータ) (2024-09-10T18:11:48Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - Towards Subject Agnostic Affective Emotion Recognition [8.142798657174332]
脳波信号による脳-コンピュータインタフェース(aBCI)の不安定性
本稿では,メタラーニングに基づくメタドメイン適応手法を提案する。
提案手法は,パブリックなaBICsデータセットの実験において有効であることが示されている。
論文 参考訳(メタデータ) (2023-10-20T23:44:34Z) - A Dynamic Domain Adaptation Deep Learning Network for EEG-based Motor
Imagery Classification [1.7465786776629872]
動的ドメイン適応型ディープラーニングネットワーク(DADL-Net)を提案する。
まず、脳波データを3次元幾何学空間にマッピングし、その時空間的特徴を3次元畳み込みモジュールを通して学習する。
精度は70.42%と73.91%で、OpenBMIとBCIC IV 2aデータセットで達成された。
論文 参考訳(メタデータ) (2023-09-21T01:34:00Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
クラスレベルのセグメンテーション性能に基づいてデータを混合する自己学習フレームワークであるDomain Informed Adaptation (IDA) モデルを提案する。
IDAモデルでは、クラスレベルの性能を期待信頼スコア(ECS)によって追跡し、動的スケジュールを用いて異なる領域のデータに対する混合比を決定する。
提案手法は,GTA-Vの都市景観への適応において1.1 mIoU,SynTHIAの都市への適応において0.9 mIoUのマージンで,最先端のUDA-SS法よりも優れる。
論文 参考訳(メタデータ) (2023-03-05T18:16:34Z) - Learning to Augment via Implicit Differentiation for Domain
Generalization [107.9666735637355]
ドメイン一般化(DG)は、複数のソースドメインを活用してドメイン一般化可能なモデルを学ぶことで、この問題を克服することを目的としている。
本稿では,AugLearnと呼ばれる新しい拡張型DG手法を提案する。
AugLearnは、PACS、Office-Home、Digits-DGの3つの標準DGベンチマークで効果を示す。
論文 参考訳(メタデータ) (2022-10-25T18:51:51Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
ディープニューラルネットワークは一般的に、ラベル付きトレーニングデータが多く必要であり、トレーニングデータとテストデータの間のドメインシフトに弱い。
本稿では,ラベル付きソースからラベル付きターゲットドメインへのモデルの適用により,画像登録のための幾何学的領域適応手法を提案する。
本手法は,ベースラインモデルの精度を目標データに適合させながら,ベースラインモデルの50%/47%を継続的に改善する。
論文 参考訳(メタデータ) (2022-07-01T12:16:42Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
本稿では,3次元分子構造の大規模データセットを平衡に利用した事前学習手法について述べる。
近年のノイズレギュラー化の進展に触発されて, 事前学習の目的は, 雑音の除去に基づくものである。
論文 参考訳(メタデータ) (2022-05-31T22:28:34Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
我々は、Mono3D上での教師なしドメイン適応のための新しい自己学習フレームワークSTMono3Dを提案する。
対象ドメイン上で適応的な擬似ラベルを生成するための教師学生パラダイムを開発する。
STMono3Dは、評価されたすべてのデータセットで顕著なパフォーマンスを達成し、KITTI 3Dオブジェクト検出データセットの完全な教師付き結果を超えています。
論文 参考訳(メタデータ) (2022-04-25T12:23:07Z) - Deep learning based domain adaptation for mitochondria segmentation on
EM volumes [5.682594415267948]
対象領域におけるミトコンドリアセグメンテーションを改善するための3つの非教師なし領域適応戦略を提案する。
そこで本研究では,ソースドメイン内でのみ得られる形態的事前条件に基づいて,新たな学習停止基準を提案する。
評価ラベルがない場合、提案した形態素に基づく計量をモニタリングすることは、トレーニングプロセスを止めて平均最適モデルを選択するための直感的で効果的な方法である。
論文 参考訳(メタデータ) (2022-02-22T09:49:25Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - CNN-based Approaches For Cross-Subject Classification in Motor Imagery:
From The State-of-The-Art to DynamicNet [0.2936007114555107]
運動画像(MI)ベースの脳-コンピュータインタフェース(BCI)システムは、コミュニケーションと制御の代替手段を提供するためにますます採用されています。
信頼できるBCIシステムを得るには、脳信号からMIを正確に分類することが不可欠です。
ディープラーニングアプローチは、標準的な機械学習技術の有効な代替手段として現れ始めている。
論文 参考訳(メタデータ) (2021-05-17T14:57:13Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。