DPO: A Differential and Pointwise Control Approach to Reinforcement Learning
- URL: http://arxiv.org/abs/2404.15617v3
- Date: Wed, 21 May 2025 03:15:48 GMT
- Title: DPO: A Differential and Pointwise Control Approach to Reinforcement Learning
- Authors: Minh Nguyen, Chandrajit Bajaj,
- Abstract summary: Reinforcement learning (RL) in continuous state-action spaces remains challenging in scientific computing.<n>We introduce Differential Reinforcement Learning (Differential RL), a novel framework that reformulates RL from a continuous-time control perspective.<n>We develop Differential Policy Optimization (DPO), a pointwise, stage-wise algorithm that refines local movement operators.
- Score: 3.2857981869020327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) in continuous state-action spaces remains challenging in scientific computing due to poor sample efficiency and lack of pathwise physical consistency. We introduce Differential Reinforcement Learning (Differential RL), a novel framework that reformulates RL from a continuous-time control perspective via a differential dual formulation. This induces a Hamiltonian structure that embeds physics priors and ensures consistent trajectories without requiring explicit constraints. To implement Differential RL, we develop Differential Policy Optimization (DPO), a pointwise, stage-wise algorithm that refines local movement operators along the trajectory for improved sample efficiency and dynamic alignment. We establish pointwise convergence guarantees, a property not available in standard RL, and derive a competitive theoretical regret bound of $O(K^{5/6})$. Empirically, DPO outperforms standard RL baselines on representative scientific computing tasks, including surface modeling, grid control, and molecular dynamics, under low-data and physics-constrained conditions.
Related papers
- Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - RL-DAUNCE: Reinforcement Learning-Driven Data Assimilation with Uncertainty-Aware Constrained Ensembles [1.609702184777697]
We develop RL-DAUNCE, a new RL-based method that enhances data assimilation with physical constraints.<n>First, RL-DAUNCE inherits the computational efficiency of machine learning.<n>Second, RL-DAUNCE emphasizes uncertainty by advancing multiple ensemble members.<n>Third, RL-DAUNCE's ensemble-as-agents design facilitates the enforcement of physical constraints.
arXiv Detail & Related papers (2025-05-08T17:43:35Z) - Policy Regularization on Globally Accessible States in Cross-Dynamics Reinforcement Learning [53.9544543607396]
We propose a novel framework that integrates reward rendering with Imitation from Observation (IfO)<n>By instantiating F-distance in different ways, we derive two theoretical analysis and develop a practical algorithm called Accessible State Oriented Policy Regularization (ASOR)<n>ASOR serves as a general add-on module that can be incorporated into various approaches RL, including offline RL and off-policy RL.
arXiv Detail & Related papers (2025-03-10T03:50:20Z) - Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization [22.67700436936984]
We introduce Direct Advantage Policy Optimization (DAPO), a novel step-level offline reinforcement learning algorithm.
DAPO employs a critic function to predict the reasoning accuracy at each step, thereby generating dense signals to refine the generation strategy.
Our results show that DAPO can effectively enhance the mathematical and code capabilities on both SFT models and RL models, demonstrating the effectiveness of DAPO.
arXiv Detail & Related papers (2024-12-24T08:39:35Z) - Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone [72.17534881026995]
We develop an offline and online fine-tuning approach called policy-agnostic RL (PA-RL)
We show the first result that successfully fine-tunes OpenVLA, a 7B generalist robot policy, autonomously with Cal-QL, an online RL fine-tuning algorithm.
arXiv Detail & Related papers (2024-12-09T17:28:03Z) - Conformal Symplectic Optimization for Stable Reinforcement Learning [21.491621524500736]
By utilizing relativistic kinetic energy, RAD incorporates from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal influences.<n> Notably, RAD achieves up to a 155.1% performance improvement, showcasing its efficacy in training Atari games.
arXiv Detail & Related papers (2024-12-03T09:07:31Z) - ODRL: A Benchmark for Off-Dynamics Reinforcement Learning [59.72217833812439]
We introduce ODRL, the first benchmark tailored for evaluating off-dynamics RL methods.
ODRL contains four experimental settings where the source and target domains can be either online or offline.
We conduct extensive benchmarking experiments, which show that no method has universal advantages across varied dynamics shifts.
arXiv Detail & Related papers (2024-10-28T05:29:38Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference [15.038210624870656]
Reward inference is a critical intermediate step in the Reinforcement Learning from Human Feedback pipeline.
This paper develops two RLHF algorithms without reward inference for general RL problems beyond bandits and deterministic MDP bandit, and general preference models beyond the Bradley-Terry model.
arXiv Detail & Related papers (2024-09-25T22:20:11Z) - Preference-Guided Reinforcement Learning for Efficient Exploration [7.83845308102632]
We introduce LOPE: Learning Online with trajectory Preference guidancE, an end-to-end preference-guided RL framework.
Our intuition is that LOPE directly adjusts the focus of online exploration by considering human feedback as guidance.
LOPE outperforms several state-of-the-art methods regarding convergence rate and overall performance.
arXiv Detail & Related papers (2024-07-09T02:11:12Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Surpassing legacy approaches to PWR core reload optimization with single-objective Reinforcement learning [0.0]
We have developed methods based on Deep Reinforcement Learning (DRL) for both single- and multi-objective optimization.
In this paper, we demonstrate the advantage of our RL-based approach, specifically using Proximal Policy Optimization (PPO)
PPO adapts its search capability via a policy with learnable weights, allowing it to function as both a global and local search method.
arXiv Detail & Related papers (2024-02-16T19:35:58Z) - Adaptive Primal-Dual Method for Safe Reinforcement Learning [9.5147410074115]
We propose, analyze and evaluate adaptive primal-dual (APD) methods for Safe Reinforcement Learning (SRL)
Two adaptive LRs are adjusted to the Lagrangian multipliers so as to optimize the policy in each iteration.
Experiments show that the practical APD algorithm outperforms (or achieves comparable performance) and attains more stable training than the constant LR cases.
arXiv Detail & Related papers (2024-02-01T05:53:44Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
This paper studies the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF)
We first identify the primary challenges of existing popular methods like offline PPO and offline DPO as lacking in strategical exploration of the environment.
We propose efficient algorithms with finite-sample theoretical guarantees.
arXiv Detail & Related papers (2023-12-18T18:58:42Z) - Analyzing Generalization in Policy Networks: A Case Study with the
Double-Integrator System [13.012569626941062]
This paper uses a novel analysis technique known as state division to uncover the underlying factors contributing to performance deterioration.
We show that the expansion of state space induces the activation function $tanh$ to exhibit saturability, resulting in the transformation of the state division boundary from nonlinear to linear.
arXiv Detail & Related papers (2023-12-16T15:06:29Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
Reinforcement Learning (RL) provides a powerful framework for decision-making in complex environments.
This paper presents a novel Spiking Neural Network (SNN) architecture for solving RL problems with real-valued observations.
arXiv Detail & Related papers (2023-07-06T12:33:34Z) - Stepsize Learning for Policy Gradient Methods in Contextual Markov
Decision Processes [35.889129338603446]
Policy-based algorithms are among the most widely adopted techniques in model-free RL.
They tend to struggle when asked to accomplish a series of heterogeneous tasks.
We introduce a new formulation, known as meta-MDP, that can be used to solve any hyper parameter selection problem in RL.
arXiv Detail & Related papers (2023-06-13T12:58:12Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - One-Step Distributional Reinforcement Learning [10.64435582017292]
We present the simpler one-step distributional reinforcement learning (OS-DistrRL) framework.
We show that our approach comes with a unified theory for both policy evaluation and control.
We propose two OS-DistrRL algorithms for which we provide an almost sure convergence analysis.
arXiv Detail & Related papers (2023-04-27T06:57:00Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - A Policy Efficient Reduction Approach to Convex Constrained Deep
Reinforcement Learning [2.811714058940267]
We propose a new variant of the conditional gradient (CG) type algorithm, which generalizes the minimum norm point (MNP) method.
Our method reduces the memory costs by an order of magnitude, and achieves better performance, demonstrating both its effectiveness and efficiency.
arXiv Detail & Related papers (2021-08-29T20:51:32Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.