論文の概要: Building-PCC: Building Point Cloud Completion Benchmarks
- arxiv url: http://arxiv.org/abs/2404.15644v1
- Date: Wed, 24 Apr 2024 04:50:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 20:09:25.154708
- Title: Building-PCC: Building Point Cloud Completion Benchmarks
- Title(参考訳): Building-PCC: ポイントクラウド補完ベンチマークの構築
- Authors: Weixiao Gao, Ravi Peters, Jantien Stoter,
- Abstract要約: ライダー技術は都市景観における3Dデータの収集に広く応用されている。
収集された点雲データは、閉塞、信号吸収、スペクトル反射などの要因により不完全性を示すことが多い。
本稿では,これらの不完全データ処理におけるポイントクラウド補完技術の応用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the rapid advancement of 3D sensing technologies, obtaining 3D shape information of objects has become increasingly convenient. Lidar technology, with its capability to accurately capture the 3D information of objects at long distances, has been widely applied in the collection of 3D data in urban scenes. However, the collected point cloud data often exhibit incompleteness due to factors such as occlusion, signal absorption, and specular reflection. This paper explores the application of point cloud completion technologies in processing these incomplete data and establishes a new real-world benchmark Building-PCC dataset, to evaluate the performance of existing deep learning methods in the task of urban building point cloud completion. Through a comprehensive evaluation of different methods, we analyze the key challenges faced in building point cloud completion, aiming to promote innovation in the field of 3D geoinformation applications. Our source code is available at https://github.com/tudelft3d/Building-PCC-Building-Point-Cloud-Completion-Benchmarks.git.
- Abstract(参考訳): 3次元センシング技術の急速な進歩により、物体の3次元形状情報を得るのがますます便利になっている。
ライダー技術は、遠距離で物体の3D情報を正確にキャプチャする機能を備えており、都市部の3Dデータの収集に広く応用されている。
しかし、収集された点雲データは、閉塞、信号吸収、スペクトル反射などの要因により不完全性を示すことが多い。
本稿では,これらの不完全データ処理におけるポイントクラウド補完技術の適用について検討し,都市のビルディングポイントクラウド補完作業における既存のディープラーニング手法の性能を評価するために,ビルディングPCCデータセットを新たに構築する。
異なる手法の総合的な評価を通じて,3次元地理情報分野の革新を促進することを目的として,ビルディングポイントクラウドの完成において直面する重要な課題を分析した。
ソースコードはhttps://github.com/tudelft3d/Building-PCC-Building-Point-Cloud-Completion-Benchmarks.gitで公開されています。
関連論文リスト
- BelHouse3D: A Benchmark Dataset for Assessing Occlusion Robustness in 3D Point Cloud Semantic Segmentation [2.446672595462589]
本稿では,3次元屋内シーンセマンティックセマンティックセグメンテーション用に設計された,新たな合成点クラウドデータセットであるBelHouse3Dデータセットを紹介する。
このデータセットは、ベルギーの32軒の家の実世界の参照を使って構築されており、合成データが実世界の状況と密接に一致していることを保証する。
論文 参考訳(メタデータ) (2024-11-20T12:09:43Z) - InLUT3D: Challenging real indoor dataset for point cloud analysis [0.0]
本稿では,屋内環境におけるシーン理解の分野を推し進めるための総合的なリソースであるInLUT3Dポイントクラウドデータセットを紹介する。
このデータセットは、高解像度レーザーベースの点雲と手動ラベリングを特徴とするロドス工科大学のW7学部ビル内の様々な空間をカバーしている。
論文 参考訳(メタデータ) (2024-07-22T09:56:31Z) - AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud
Registration [69.21282992341007]
Auto Synthは、ポイントクラウド登録のための3Dトレーニングデータを自動的に生成する。
私たちはポイントクラウド登録ネットワークをもっと小さなサロゲートネットワークに置き換え、4056.43$のスピードアップを実現しました。
TUD-L,LINEMOD,Occluded-LINEMODに関する我々の研究結果は,検索データセットでトレーニングされたニューラルネットワークが,広く使用されているModelNet40データセットでトレーニングされたニューラルネットワークよりも一貫してパフォーマンスが向上していることを示す。
論文 参考訳(メタデータ) (2023-09-20T09:29:44Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion
Processing and Analysis [14.203228394483117]
本研究の目的は、ポイントベース、畳み込みベース、グラフベース、生成モデルベースアプローチなど、様々な手法に関する包括的な調査を行うことである。
このレビューでは、よく使われるデータセットをまとめ、ポイントクラウド補完の応用について説明する。
論文 参考訳(メタデータ) (2022-03-07T11:47:14Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
センサットウルバン(SensatUrban)は、イギリスの3都市から収集された7.6km2の30億点近くからなる、都市規模のUAV測光点クラウドデータセットである。
データセットの各ポイントは、粒度の細かいセマンティックアノテーションでラベル付けされ、その結果、既存の最大のフォトグラムポイントクラウドデータセットの3倍の大きさのデータセットが生成される。
論文 参考訳(メタデータ) (2022-01-12T14:48:11Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
エッジ生成(VE-PCN)を利用した点雲補完のためのボクセルネットワークを開発した。
まず点雲を正規のボクセル格子に埋め込み、幻覚した形状のエッジの助けを借りて完全な物体を生成する。
この分離されたアーキテクチャとマルチスケールのグリッド機能学習は、より現実的な表面上の詳細を生成することができる。
論文 参考訳(メタデータ) (2021-08-23T05:10:29Z) - PnP-3D: A Plug-and-Play for 3D Point Clouds [38.05362492645094]
本稿では,既存ネットワークのポイントクラウドデータ解析における有効性を改善するために,プラグイン・アンド・プレイモジュール -3D を提案する。
アプローチを徹底的に評価するために,3つの標準的なクラウド分析タスクについて実験を行った。
本研究は,最先端の成果の達成に加えて,我々のアプローチのメリットを実証する包括的研究を提案する。
論文 参考訳(メタデータ) (2021-08-16T23:59:43Z) - Learning the Next Best View for 3D Point Clouds via Topological Features [4.447259318741305]
ノイズの多い3Dセンサの次の最良のビューを導くための強化学習手法を提案する。
測定器は観察された表面の不整合セクションを結合し、穴および凹面セクションのような高密度の特徴に焦点を合わせます。
論文 参考訳(メタデータ) (2021-03-04T02:19:12Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
我々は、30億点近い注釈付きポイントを持つ都市規模の測光点クラウドデータセットを提示する。
私たちのデータセットは、イギリスの3つの都市からなり、都市の景観の約7.6km2をカバーしています。
我々は,データセット上での最先端アルゴリズムの性能を評価し,その結果を包括的に分析する。
論文 参考訳(メタデータ) (2020-09-07T14:47:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。