論文の概要: MD-NOMAD: Mixture density nonlinear manifold decoder for emulating stochastic differential equations and uncertainty propagation
- arxiv url: http://arxiv.org/abs/2404.15731v1
- Date: Wed, 24 Apr 2024 08:39:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 19:49:56.965582
- Title: MD-NOMAD: Mixture density nonlinear manifold decoder for emulating stochastic differential equations and uncertainty propagation
- Title(参考訳): MD-NOMAD:確率微分方程式と不確実性伝播をエミュレートするための混合密度非線形多様体デコーダ
- Authors: Akshay Thakur, Souvik Chakraborty,
- Abstract要約: 本研究では, 混合密度非線形多様体デコーダ (MD-NOMAD) をシミュレータとして提案する。
提案手法は,ニューラルアーキテクチャの非線形デコーダ(NomaD)を混合密度法で学習し,出力関数の条件付き確率を推定する。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a neural operator framework, termed mixture density nonlinear manifold decoder (MD-NOMAD), for stochastic simulators. Our approach leverages an amalgamation of the pointwise operator learning neural architecture nonlinear manifold decoder (NOMAD) with mixture density-based methods to estimate conditional probability distributions for stochastic output functions. MD-NOMAD harnesses the ability of probabilistic mixture models to estimate complex probability and the high-dimensional scalability of pointwise neural operator NOMAD. We conduct empirical assessments on a wide array of stochastic ordinary and partial differential equations and present the corresponding results, which highlight the performance of the proposed framework.
- Abstract(参考訳): 確率シミュレータのためのニューラル演算子フレームワークである混合密度非線形多様体デコーダ(MD-NOMAD)を提案する。
提案手法は,ニューラルアーキテクチャの非線形デコーダ(NomaD)と混合密度に基づく手法を併用して,確率的出力関数の条件確率分布を推定する。
MD-NOMADは、確率的混合モデルの複雑な確率と、ポイントワイドニューラル演算子NOMADの高次元スケーラビリティを推定する能力を利用する。
本研究では, 確率的常微分方程式と偏微分方程式の広範囲にまたがる実験的な評価を行い, 対応する結果を示し, 提案フレームワークの性能を明らかにする。
関連論文リスト
- Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
我々はメトロポリス・ハスティングス検層の自動識別アルゴリズムを開発した。
難解な対象密度に対する期待値として表現された目的に対して勾配に基づく最適化を適用する。
論文 参考訳(メタデータ) (2023-06-13T17:56:02Z) - Deep Gaussian Mixture Ensembles [9.673093148930874]
この研究は、ディープガウス混合アンサンブル(DGME)と呼ばれる新しい確率的深層学習技術を導入している。
DGMEは、重み付き分布やマルチモーダル分布などの複雑な確率分布を近似することができる。
実験の結果,DGMEは複雑な予測密度を扱う深層学習モデルにおいて,最先端の不確実性よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-06-12T16:53:38Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Machine-Learned Exclusion Limits without Binning [0.0]
我々は、1次元信号と背景確率密度関数を抽出するためにカーネル密度推定器(KDE)を含むMLL法を拡張した。
本手法は,レプトン対に崩壊するエキゾチックヒッグス粒子の探索と,レプトン対に崩壊するZ'$ボソンの2例に適用する。
論文 参考訳(メタデータ) (2022-11-09T11:04:50Z) - Moment Estimation for Nonparametric Mixture Models Through Implicit
Tensor Decomposition [7.139680863764187]
条件に依存しない混合モデルを$mathbbRn$で推定するために,最小二乗法を交互に最適化する手法を提案する。
線形解を用いて、累積分布関数、高次モーメント、その他の成分分布の統計値を計算する。
数値実験は、アルゴリズムの競合性能と、多くのモデルや応用への適用性を実証する。
論文 参考訳(メタデータ) (2022-10-25T23:31:33Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
本稿では、ノイズや非ガウス的なデータに対するデータ計算の欠如に対処する。
楕円分布と潜在的な欠落データを扱う特性を混合した新しいEMアルゴリズムについて検討した。
合成データの実験的結果は,提案アルゴリズムが外れ値に対して頑健であり,非ガウスデータで使用可能であることを示す。
論文 参考訳(メタデータ) (2022-01-28T10:01:37Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
このプロセスの混合物の観察から多次元音源過程を復元する古典的問題を考察する。
このリカバリは、この混合物が十分に微分可能で可逆な関数によって与えられる場合、多くの一般的なプロセスのモデル(座標の順序と単調スケーリングまで)に対して可能であることを示す。
論文 参考訳(メタデータ) (2021-02-04T20:28:44Z) - Multivariate Density Estimation with Deep Neural Mixture Models [0.0]
ディープニューラルネットワーク(DNN)は密度推定にはほとんど適用されていない。
本稿では,ニューラルミクチャー密度(NMM)に関するこれまでの研究を拡張した。
深部NMM(Deep NMM)を推定するための最大形アルゴリズム(ML)が配される。
DNMMを通して任意の精度でモデル化できる確率密度関数のクラスが正式に定義される。
論文 参考訳(メタデータ) (2020-12-06T23:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。