論文の概要: Moment Estimation for Nonparametric Mixture Models Through Implicit
Tensor Decomposition
- arxiv url: http://arxiv.org/abs/2210.14386v3
- Date: Mon, 7 Aug 2023 20:26:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-09 17:44:16.739032
- Title: Moment Estimation for Nonparametric Mixture Models Through Implicit
Tensor Decomposition
- Title(参考訳): インシシットテンソル分解による非パラメトリック混合モデルのモーメント推定
- Authors: Yifan Zhang, Joe Kileel
- Abstract要約: 条件に依存しない混合モデルを$mathbbRn$で推定するために,最小二乗法を交互に最適化する手法を提案する。
線形解を用いて、累積分布関数、高次モーメント、その他の成分分布の統計値を計算する。
数値実験は、アルゴリズムの競合性能と、多くのモデルや応用への適用性を実証する。
- 参考スコア(独自算出の注目度): 7.139680863764187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an alternating least squares type numerical optimization scheme to
estimate conditionally-independent mixture models in $\mathbb{R}^n$, without
parameterizing the distributions. Following the method of moments, we tackle an
incomplete tensor decomposition problem to learn the mixing weights and
componentwise means. Then we compute the cumulative distribution functions,
higher moments and other statistics of the component distributions through
linear solves. Crucially for computations in high dimensions, the steep costs
associated with high-order tensors are evaded, via the development of efficient
tensor-free operations. Numerical experiments demonstrate the competitive
performance of the algorithm, and its applicability to many models and
applications. Furthermore we provide theoretical analyses, establishing
identifiability from low-order moments of the mixture and guaranteeing local
linear convergence of the ALS algorithm.
- Abstract(参考訳): 本稿では,分散をパラメータ化することなく,条件付き非依存混合モデル推定のための交互最小二乗型数値最適化手法を提案する。
モーメントの手法に従うと、不完全テンソル分解問題に取り組み、混合重みと成分的手段を学習する。
次に,成分分布の累積分布関数,高次モーメント,その他の統計を線形解法によって計算する。
高次元の計算では、高階テンソルに関連する急なコストは、効率的なテンソルフリー演算の開発によって回避される。
数値実験はアルゴリズムの競合性能と多くのモデルや応用への適用性を実証する。
さらに,混合の低次モーメントから同定可能性を確立し,alsアルゴリズムの局所線形収束を保証する理論解析を行う。
関連論文リスト
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - MD-NOMAD: Mixture density nonlinear manifold decoder for emulating stochastic differential equations and uncertainty propagation [0.9208007322096533]
本研究では, 混合密度非線形多様体デコーダ (MD-NOMAD) をシミュレータとして提案する。
提案手法は,ニューラルアーキテクチャの非線形デコーダ(NomaD)を混合密度法で学習し,出力関数の条件付き確率を推定する。
論文 参考訳(メタデータ) (2024-04-24T08:39:14Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
エネルギーベースモデル(英: Energy-based model、EBM)は、統計物理学にインスパイアされた生成モデルである。
モデルパラメータに対する勾配の計算には、モデルの分布をサンプリングする必要がある。
ここでは、ジャジンスキーの等式に基づく非平衡熱力学の結果を用いて、この計算を効率的に行う方法を示す。
論文 参考訳(メタデータ) (2023-05-30T21:07:52Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Scalable Dynamic Mixture Model with Full Covariance for Probabilistic
Traffic Forecasting [16.04029885574568]
時間変化誤差過程に対するゼロ平均ガウス分布の動的混合を提案する。
提案手法は,学習すべきパラメータを数つ追加するだけで,既存のディープラーニングフレームワークにシームレスに統合することができる。
提案手法を交通速度予測タスク上で評価し,提案手法がモデル水平線を改良するだけでなく,解釈可能な時間相関構造も提供することを発見した。
論文 参考訳(メタデータ) (2022-12-10T22:50:00Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - Tensor decomposition for learning Gaussian mixtures from moments [6.576993289263191]
データ処理と機械学習では、データを正確に表現できるモデルを復元し、活用することが重要な課題である。
この問題に対処するための対称テンソル分解法について検討し,データ分布の経験的モーメントからテンソルを構築する。
論文 参考訳(メタデータ) (2021-06-01T15:11:08Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
テンソルの合同ベンチマークとクラスタリングの問題を考察する。
本稿では,統計的精度の高い近傍に幾何的に収束する効率的な高速最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-15T21:06:16Z) - Stochastic Approximation for Online Tensorial Independent Component
Analysis [98.34292831923335]
独立成分分析(ICA)は統計機械学習や信号処理において一般的な次元削減ツールである。
本稿では,各独立成分を推定する副産物オンライン時系列アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T18:52:37Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCに適合する新しい構造テンソル低ランクノルムを設計する。
提案手法は最先端の手法よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T11:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。