論文の概要: Glider: Global and Local Instruction-Driven Expert Router
- arxiv url: http://arxiv.org/abs/2410.07172v1
- Date: Wed, 9 Oct 2024 17:59:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 21:46:48.789572
- Title: Glider: Global and Local Instruction-Driven Expert Router
- Title(参考訳): Glider: グローバルでローカルなインストラクション駆動のエキスパートルータ
- Authors: Pingzhi Li, Prateek Yadav, Jaehong Yoon, Jie Peng, Yi-Lin Sung, Mohit Bansal, Tianlong Chen,
- Abstract要約: モデルMoErging」手法は、保持タスクのパフォーマンスを犠牲にして、未確認タスクへの一般化を優先する。
マルチスケールルーティング機構を統合したGLIDER(Global and Local Instruction Driven Expert Router)を提案する。
GLIDERは、ホールドアウトタスクの強い一般化を維持しながら、ホールドイン性能を大幅に改善する。
- 参考スコア(独自算出の注目度): 83.785832410832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The availability of performant pre-trained models has led to a proliferation of fine-tuned expert models that are specialized to particular domains. This has enabled the creation of powerful and adaptive routing-based "Model MoErging" methods with the goal of using expert modules to create an aggregate system with improved performance or generalization. However, existing MoErging methods often prioritize generalization to unseen tasks at the expense of performance on held-in tasks, which limits its practical applicability in real-world deployment scenarios. We observe that current token-level routing mechanisms neglect the global semantic context of the input task. This token-wise independence hinders effective expert selection for held-in tasks, as routing decisions fail to incorporate the semantic properties of the task. To address this, we propose, Global and Local Instruction Driven Expert Router (GLIDER) that integrates a multi-scale routing mechanism, encompassing a semantic global router and a learned local router. The global router leverages LLM's advanced reasoning capabilities for semantic-related contexts to enhance expert selection. Given the input query and LLM, the router generates semantic task instructions that guide the retrieval of the most relevant experts across all layers. This global guidance is complemented by a local router that facilitates token-level routing decisions within each module, enabling finer control and enhanced performance on unseen tasks. Our experiments using T5-based models for T0 and FLAN tasks demonstrate that GLIDER achieves substantially improved held-in performance while maintaining strong generalization on held-out tasks. We also perform ablations experiments to dive deeper into the components of GLIDER. Our experiments highlight the importance of our multi-scale routing that leverages LLM-driven semantic reasoning for MoErging methods.
- Abstract(参考訳): 性能訓練済みのモデルが利用可能になったことで、特定のドメインに特化された微調整されたエキスパートモデルが急増した。
これにより、高性能で適応的なルーティングベースの"Model MoErging"メソッドの作成が可能になった。
しかし、既存のMoErgingメソッドは、ホールドインタスクのパフォーマンスを犠牲にして、一般化を優先し、実際のデプロイメントシナリオにおける実用性を制限することが多い。
我々は,現在のトークンレベルのルーティング機構が,入力タスクのグローバルな意味的コンテキストを無視していることを観察する。
このトークン単位の独立性は、ルーティング決定がタスクのセマンティックプロパティを組み込まないため、ホールドインタスクの効果的な専門家選択を妨げる。
そこで本研究では,グローバルルータと学習ローカルルータを含むマルチスケールルーティング機構を統合したGLIDER(Global and Local Instruction Driven Expert Router)を提案する。
グローバルルータは、LLMの高度な推論機能を利用して、セマンティックなコンテキストを解析し、専門家の選択を強化する。
入力クエリとLLMが与えられた後、ルータはすべてのレイヤにまたがる最も関連性の高い専門家の検索をガイドするセマンティックタスク命令を生成する。
このグローバルガイダンスは,各モジュール内のトークンレベルのルーティング決定を容易にするローカルルータによって補完される。
T0タスクとFLANタスクのT5モデルを用いた実験により,GLIDERはホールドアウトタスクの強力な一般化を維持しつつ,ホールドイン性能を大幅に向上することを示した。
また、GLIDERのコンポーネントを深く掘り下げるためのアブレーション実験も行います。
実験では,MoErging 法に対する LLM によるセマンティック推論を活用するマルチスケールルーティングの重要性を強調した。
関連論文リスト
- AT-MoE: Adaptive Task-planning Mixture of Experts via LoRA Approach [0.6906005491572401]
本稿では,Adaptive Task-planing Mixture of Experts(AT-MoE)アーキテクチャを紹介する。
まず、LoRAアプローチを用いてタスク固有の専門家を訓練し、専門分野における問題解決能力と解釈可能性を高める。
次に,複雑なタスク命令に基づくモジュール融合を最適化する階層適応型グループルーティングモジュールを提案する。
論文 参考訳(メタデータ) (2024-10-12T13:03:15Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - Semantic Routing for Enhanced Performance of LLM-Assisted Intent-Based 5G Core Network Management and Orchestration [10.981422497762837]
大規模言語モデル(LLM)は人工知能(AI)アプリケーションで急速に普及している。
本稿では,5Gコアネットワークの意図に基づく管理とオーケストレーションにおける性能向上を目的としたセマンティックルーティングを提案する。
論文 参考訳(メタデータ) (2024-04-24T13:34:20Z) - Mixture-of-LoRAs: An Efficient Multitask Tuning for Large Language
Models [7.966452497550907]
大規模言語モデル(LLM)を用いたマルチタスク学習のためのMixture-of-LoRA(MoA)アーキテクチャを提案する。
複数のドメイン固有のLoRAモジュールは、Mixture-of-Experts(MoE)で観察される専門家設計原則と一致させることができる。
各LoRAモデルは、新しいドメインに反復的に適応することができ、素早くドメイン固有の適応を可能にする。
論文 参考訳(メタデータ) (2024-03-06T03:33:48Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - Not All Tasks Are Equally Difficult: Multi-Task Deep Reinforcement
Learning with Dynamic Depth Routing [26.44273671379482]
マルチタスク強化学習は、一つのポリシーで複数のタスクをこなす。
この研究は動的深度ルーティング(D2R)フレームワークを示し、特定の中間モジュールの戦略的スキップを学習し、各タスクに対して異なる数のモジュールを柔軟に選択する。
さらに,教師なしタスクの経路探索を継続して促進する自動経路分散機構を設計し,マスタ付きタスクの経路を乱すことなく提案する。
論文 参考訳(メタデータ) (2023-12-22T06:51:30Z) - Mixture of Cluster-conditional LoRA Experts for Vision-language Instruction Tuning [68.94230363140771]
クラスター条件のLoRAエキスパート(MoCLE)の混合
MoCLEは、命令クラスタに基づいてタスクカスタマイズされたモデルパラメータを活性化するために設計された、新しいMixture of Expertsアーキテクチャである。
InstructBLIPとLLaVAの実験はMoCLEの有効性を示した。
論文 参考訳(メタデータ) (2023-12-19T18:11:19Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
本稿では,大規模言語モデルをDOmain固有のKnowledgEで拡張し,実践的アプリケーション,すなわちDOKEの性能を向上させるためのパラダイムを提案する。
このパラダイムはドメイン知識抽出器に依存し,1)タスクに効果的な知識を準備すること,2)特定のサンプルごとに知識を選択すること,3)LLMで理解可能な方法で知識を表現すること,の3つのステップで動作する。
論文 参考訳(メタデータ) (2023-11-16T07:09:38Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Curricular Subgoals for Inverse Reinforcement Learning [21.038691420095525]
逆強化学習(IRL)は、専門家による実証から報酬関数を再構築し、政策学習を促進することを目的としている。
既存のIRL法は主に、模倣者と専門家の軌跡の違いを最小限に抑えるために、グローバル報酬関数の学習に重点を置いている。
エージェントの模倣を導くために,一タスクを複数の局所的なサブゴールで明示的に切り離す,Curricular Subgoal-based Inverse Reinforcement Learningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-14T04:06:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。