Soil analysis with machine-learning-based processing of stepped-frequency GPR field measurements: Preliminary study
- URL: http://arxiv.org/abs/2404.15961v1
- Date: Wed, 24 Apr 2024 16:30:12 GMT
- Title: Soil analysis with machine-learning-based processing of stepped-frequency GPR field measurements: Preliminary study
- Authors: Chunlei Xu, Michael Pregesbauer, Naga Sravani Chilukuri, Daniel Windhager, Mahsa Yousefi, Pedro Julian, Lothar Ratschbacher,
- Abstract summary: Ground Penetrating Radar (GPR) has been widely studied as a tool for extracting soil parameters relevant to agriculture and horticulture.
When combined with Machine-Learning-based (ML) methods, high-resolution Stepped Frequency Countinuous Wave Radar (SFCW) measurements hold the promise to give cost effective access to depth resolved soil parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ground Penetrating Radar (GPR) has been widely studied as a tool for extracting soil parameters relevant to agriculture and horticulture. When combined with Machine-Learning-based (ML) methods, high-resolution Stepped Frequency Countinuous Wave Radar (SFCW) measurements hold the promise to give cost effective access to depth resolved soil parameters, including at root-level depth. In a first step in this direction, we perform an extensive field survey with a tractor mounted SFCW GPR instrument. Using ML data processing we test the GPR instrument's capabilities to predict the apparent electrical conductivity (ECaR) as measured by a simultaneously recording Electromagnetic Induction (EMI) instrument. The large-scale field measurement campaign with 3472 co-registered and geo-located GPR and EMI data samples distributed over ~6600 square meters was performed on a golf course. The selected terrain benefits from a high surface homogeneity, but also features the challenge of only small, and hence hard to discern, variations in the measured soil parameter. Based on the quantitative results we suggest the use of nugget-to-sill ratio as a performance metric for the evaluation of end-to-end ML performance in the agricultural setting and discuss the limiting factors in the multi-sensor regression setting. The code is released as open source and available at https://opensource.silicon-austria.com/xuc/soil-analysis-machine-learning-stepped-frequency-gpr.
Related papers
- Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Enhanced Genetic Programming Models with Multiple Equations for Accurate
Semi-Autogenous Grinding Mill Throughput Prediction [11.462441722546428]
This study introduces an enhanced GP approach entitled multi-equation GP (MEGP) for more accurate prediction of SAG mill throughput.
To assess the effect of distance measures, four different distance measures are employed in MEGP method.
arXiv Detail & Related papers (2023-12-18T03:50:28Z) - Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
We introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns.
We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.
arXiv Detail & Related papers (2023-11-30T13:50:21Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - PPG-based Heart Rate Estimation with Efficient Sensor Sampling and
Learning Models [6.157700936357335]
Photoplethysthy (mography) sensors embedded in wearable devices can estimate heart rate (HR) with high accuracy.
However, applying PPG sensor based HR estimation to embedded devices still faces challenges due to the energy-intensive high-frequency PPG sampling.
In this work, we aim to explore HR estimation techniques that are more suitable for lower-power and resource-constrained embedded devices.
arXiv Detail & Related papers (2023-03-23T19:47:36Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - Gaussian Process Regression for Absorption Spectra Analysis of Molecular
Dimers [68.8204255655161]
We discuss an approach based on a machine learning technique, where the parameters for the numerical calculations are chosen from Gaussian Process Regression (GPR)
This approach does not only quickly converge to an optimal parameter set, but in addition provides information about the complete parameter space.
We find that indeed the GPR gives reliable results which are in agreement with direct calculations of these parameters using quantum chemical methods.
arXiv Detail & Related papers (2021-12-14T17:46:45Z) - Total Nitrogen Estimation in Agricultural Soils via Aerial Multispectral
Imaging and LIBS [0.6875312133832077]
Most existing methods to measure soil health indicators (SHIs) are in-lab wet chemistry or spectroscopy-based methods.
We develop an artificial intelligence (AI)-driven near real-time unmanned aerial vehicle (UAV)-based multispectral sensing (UMS) solution to estimate total nitrogen (TN) of the soil.
arXiv Detail & Related papers (2021-07-06T02:37:30Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
Terahertz (THz) signal generation and radiation methods are shaping the future of wireless systems.
THz-specific signal processing techniques should complement this re-surged interest in THz sensing for efficient utilization of the THz band.
We present an overview of these techniques, with an emphasis on signal pre-processing.
We also address the effectiveness of deep learning techniques by exploring their promising sensing capabilities at the THz band.
arXiv Detail & Related papers (2021-04-09T01:38:34Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - Retrieval of aboveground crop nitrogen content with a hybrid machine
learning method [5.6740282691255075]
Hyperspectral acquisitions have proven to be the most informative Earth observation data source for estimation of nitrogen (N) content.
In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance.
Our study presents a hybrid retrieval method using a physically-based approach combined with machine learning regression to estimate crop N content.
arXiv Detail & Related papers (2020-12-07T13:06:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.