論文の概要: How explainable AI affects human performance: A systematic review of the behavioural consequences of saliency maps
- arxiv url: http://arxiv.org/abs/2404.16042v2
- Date: Fri, 26 Apr 2024 04:25:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 15:13:44.235005
- Title: How explainable AI affects human performance: A systematic review of the behavioural consequences of saliency maps
- Title(参考訳): 説明可能なAIが人間のパフォーマンスにどのように影響するか:サリエンシマップの行動結果の体系的レビュー
- Authors: Romy Müller,
- Abstract要約: 透明性マップは、ディープニューラルネットワークがどのように画像を分類するかを説明することができる。
しかし、実際には人間にとって役に立つのだろうか?
68のユーザスタディの体系的なレビューでは、サリエンシマップは人間のパフォーマンスを向上させるが、ヌル効果やコストさえも非常に一般的であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Saliency maps can explain how deep neural networks classify images. But are they actually useful for humans? The present systematic review of 68 user studies found that while saliency maps can enhance human performance, null effects or even costs are quite common. To investigate what modulates these effects, the empirical outcomes were organised along several factors related to the human tasks, AI performance, XAI methods, images to be classified, human participants and comparison conditions. In image-focused tasks, benefits were less common than in AI-focused tasks, but the effects depended on the specific cognitive requirements. Moreover, benefits were usually restricted to incorrect AI predictions in AI-focused tasks but to correct ones in image-focused tasks. XAI-related factors had surprisingly little impact. The evidence was limited for image- and human-related factors and the effects were highly dependent on the comparison conditions. These findings may support the design of future user studies.
- Abstract(参考訳): 透明性マップは、ディープニューラルネットワークがどのように画像を分類するかを説明することができる。
しかし、実際には人間にとって役に立つのだろうか?
68のユーザスタディの体系的なレビューでは、サリエンシマップは人間のパフォーマンスを向上させるが、ヌル効果やコストさえも非常に一般的であることがわかった。
これらの効果をどう調節するかを調べるために、人間のタスク、AIパフォーマンス、XAIメソッド、分類対象の画像、人間の参加者、比較条件に関連するいくつかの要因に沿って実験結果が編成された。
イメージ中心のタスクでは、AI中心のタスクよりもメリットは一般的ではなかったが、その効果は特定の認知的要求に依存していた。
さらに、AIに焦点を当てたタスクではAI予測の誤りに制限されるが、画像に焦点を当てたタスクでは修正される。
XAI関連の要因は驚くほど少なかった。
証拠は画像関連因子と人間関連因子に限られており、その効果は比較条件に大きく依存していた。
これらの知見は、将来のユーザ研究の設計を支援する可能性がある。
関連論文リスト
- Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks [45.23431596135002]
本研究は,古典的対パートナー意識による説明が学習作業中の人間の行動とパフォーマンスに与える影響を比較検討した。
その結果, パートナー意識による説明は, 関係する人工エージェントの種類によって, 参加者に異なる影響を及ぼした。
論文 参考訳(メタデータ) (2024-11-15T13:22:04Z) - Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Don't be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration [11.824688232910193]
我々は,人間がXAIに支えられたAIによる意思決定について研究している。
その結果,誤った説明が正しいAIアドバイスに付随する場合に誤報が生じることがわかった。
この効果は、人間が欠陥のある推論戦略を推測し、タスクの実行を妨げ、手続き的知識の障害を示す。
論文 参考訳(メタデータ) (2024-09-19T14:34:20Z) - Confident Teacher, Confident Student? A Novel User Study Design for Investigating the Didactic Potential of Explanations and their Impact on Uncertainty [1.0855602842179624]
説明可能な人工知能(XAI)を用いた視覚課題における説明が人的パフォーマンスに与える影響について検討する。
アノテーションの精度が向上し、AIアシストに対する不確実性が低下していることがわかりました。
ユーザーは説明を示すと、モデルの予測をより頻繁に再現する傾向がある。
論文 参考訳(メタデータ) (2024-09-10T12:59:50Z) - Exploring the Naturalness of AI-Generated Images [59.04528584651131]
我々は、AI生成画像の視覚的自然性をベンチマークし、評価する第一歩を踏み出した。
本研究では,人間の評価を整列するAGIの自然性を自動予測するジョイント・オブジェクト・イメージ・ナチュラルネス評価器(JOINT)を提案する。
その結果,JOINTは自然性評価において,より主観的に一貫した結果を提供するために,ベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2023-12-09T06:08:09Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
人工知能(AI)技術の進歩が偽写真を生み出すのではないかという懸念が高まっている。
本研究の目的は、最先端のAI生成視覚コンテンツを識別するためのエージェントを包括的に評価することである。
論文 参考訳(メタデータ) (2023-04-25T17:51:59Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
人々はAIシステムを使って意思決定を改善するが、しばしばAIの予測を過度に、あるいは過度に予測し、手伝わなかったよりも悪いパフォーマンスをする。
人々がAIアシスタントを適切に頼りにするために、行動記述を示すことを提案する。
論文 参考訳(メタデータ) (2023-01-06T00:33:08Z) - I am Only Happy When There is Light: The Impact of Environmental Changes
on Affective Facial Expressions Recognition [65.69256728493015]
本研究では,異なる画像条件が人間の表情からの覚醒の認識に与える影響について検討した。
以上の結果から,人間の感情状態の解釈が肯定的,否定的に大きく異なることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:28:26Z) - Advancing Human-AI Complementarity: The Impact of User Expertise and
Algorithmic Tuning on Joint Decision Making [10.890854857970488]
ユーザのドメイン知識、AIシステムのメンタルモデル、レコメンデーションへの信頼など、多くの要因がヒューマンAIチームの成功に影響を与える可能性がある。
本研究は,非自明な血管ラベル作成作業において,血管が流れているか停止しているかを被験者に示すことを目的とした。
以上の結果から,AI-Assistantからの推薦はユーザの意思決定に役立つが,AIに対するユーザベースラインのパフォーマンスや,AIエラー型の相補的チューニングといった要因は,チーム全体のパフォーマンスに大きな影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2022-08-16T21:39:58Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。