論文の概要: DIG3D: Marrying Gaussian Splatting with Deformable Transformer for Single Image 3D Reconstruction
- arxiv url: http://arxiv.org/abs/2404.16323v1
- Date: Thu, 25 Apr 2024 04:18:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:48:28.166859
- Title: DIG3D: Marrying Gaussian Splatting with Deformable Transformer for Single Image 3D Reconstruction
- Title(参考訳): DIG3D:1次元画像再構成のための変形可能な変圧器を用いたガウス平滑化
- Authors: Jiamin Wu, Kenkun Liu, Han Gao, Xiaoke Jiang, Lei Zhang,
- Abstract要約: 本稿では,3次元オブジェクト再構成と新しいビュー合成のためのDIG3Dという新しい手法を提案する。
提案手法は,デコーダの3次元ガウスアンを生成するエンコーダ・デコーダ・フレームワークを用いて,エンコーダから奥行き認識画像の特徴を誘導する。
提案手法をShapeNet SRNデータセット上で評価し,車内および椅子内におけるPSNRは24.21と24.98であった。
- 参考スコア(独自算出の注目度): 12.408610403423559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of 3D reconstruction from a single-view RGB image and propose a novel approach called DIG3D for 3D object reconstruction and novel view synthesis. Our method utilizes an encoder-decoder framework which generates 3D Gaussians in decoder with the guidance of depth-aware image features from encoder. In particular, we introduce the use of deformable transformer, allowing efficient and effective decoding through 3D reference point and multi-layer refinement adaptations. By harnessing the benefits of 3D Gaussians, our approach offers an efficient and accurate solution for 3D reconstruction from single-view images. We evaluate our method on the ShapeNet SRN dataset, getting PSNR of 24.21 and 24.98 in car and chair dataset, respectively. The result outperforming the recent method by around 2.25%, demonstrating the effectiveness of our method in achieving superior results.
- Abstract(参考訳): 本稿では,1次元RGB画像からの3次元再構成の問題点を考察し,DIG3Dと呼ばれる新しい3次元オブジェクト再構成と新しいビュー合成手法を提案する。
提案手法は,デコーダの3次元ガウスアンを生成するエンコーダ・デコーダ・フレームワークを用いて,エンコーダから奥行き認識画像の特徴を誘導する。
特に、変形可能な変換器を導入し、3次元参照点と多層精細化適応による効率的かつ効果的な復号化を可能にする。
提案手法は,3次元ガウスの利点を生かして,一視点画像から3次元再構成を行うための効率的かつ正確な手法を提供する。
提案手法をShapeNet SRNデータセット上で評価し,車内および椅子内におけるPSNRは24.21と24.98であった。
その結果,近年の手法を約2.25%向上させ,優れた結果を得る上での手法の有効性を実証した。
関連論文リスト
- Textured Gaussians for Enhanced 3D Scene Appearance Modeling [58.134905268540436]
3D Gaussian Splatting (3DGS)は最先端の3D再構成およびレンダリング技術として登場した。
本稿では,それぞれにα(A), RGB, RGBAテクスチャマップを付加した一般化されたガウスの外観表現を提案する。
類似または少ないガウス数を用いて,既存の手法に比べて画質が向上したことを示す。
論文 参考訳(メタデータ) (2024-11-27T18:59:59Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting(3DGS)は、高品質な3D再構成によるリアルタイムレンダリングが可能な有望な技術として登場した。
その可能性にもかかわらず、3DGSは針状アーティファクト、準最適ジオメトリー、不正確な正常といった課題に遭遇する。
正規化として有効ランクを導入し、ガウスの構造を制約する。
論文 参考訳(メタデータ) (2024-06-17T15:51:59Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本研究では,視覚的忠実度と前景の細部を高い圧縮比で保持する原理的感度プルーニングスコアを提案する。
また,トレーニングパイプラインを変更することなく,事前訓練した任意の3D-GSモデルに適用可能な複数ラウンドプルーファインパイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats [20.833116566243408]
本稿では,Gaussianを3D GANの3次元表現として利用し,その効率的かつ明示的な特徴を活用する。
生成したガウスの位置とスケールを効果的に正規化する階層的多スケールガウス表現を持つジェネレータアーキテクチャを導入する。
実験結果から,最先端の3D一貫したGANと比較して,レンダリング速度(x100)が大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-06-05T05:52:20Z) - GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction [70.65250036489128]
3Dのセマンティック占有予測は,周囲のシーンの3Dの微細な形状とセマンティックスを得ることを目的としている。
本稿では,3Dシーンを3Dセマンティック・ガウシアンで表現するオブジェクト中心表現を提案する。
GaussianFormerは17.8%から24.8%のメモリ消費しか持たない最先端のメソッドで同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-27T17:59:51Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting [2.878831747437321]
3D-GSは、速度と画質の両方においてニューラル放射場(NeRF)を上回った新しいレンダリングアプローチである。
本研究では,現在のビューをレンダリングするために,不要な3次元ガウスをリアルタイムに識別する計算量削減手法を提案する。
Mip-NeRF360データセットの場合、提案手法は2次元画像投影の前に平均して3次元ガウスの63%を排除し、ピーク信号対雑音比(PSNR)を犠牲にすることなく全体のレンダリングを約38.3%削減する。
提案されたアクセラレータは、GPUと比較して10.7倍のスピードアップも達成している。
論文 参考訳(メタデータ) (2024-02-21T14:16:49Z) - GaussianObject: High-Quality 3D Object Reconstruction from Four Views with Gaussian Splatting [82.29476781526752]
高度にスパースな視点から3Dオブジェクトを再構成・レンダリングすることは、3Dビジョン技術の応用を促進する上で非常に重要である。
GaussianObjectは、Gaussian splattingで3Dオブジェクトを表現してレンダリングするフレームワークで、4つの入力イメージだけで高いレンダリング品質を実現する。
GaussianObjectは、MipNeRF360、OmniObject3D、OpenIllumination、および私たちが収集した未提示画像など、いくつかの挑戦的なデータセットで評価されている。
論文 参考訳(メタデータ) (2024-02-15T18:42:33Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
Amortized Generative 3D Gaussian framework (AGG) を導入する。
AGGは、共同最適化のための3Dガウス位置およびその他の外観特性の生成を分解する。
本稿では,まず3次元データの粗い表現を生成し,後に3次元ガウス超解像モジュールでアップサンプリングするカスケードパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-08T18:56:33Z) - Gaussian Grouping: Segment and Edit Anything in 3D Scenes [65.49196142146292]
ガウシアン・グルーピング(ガウシアン・グルーピング)はガウシアン・スプラッティングを拡張して,オープンワールドの3Dシーンで何かを共同で再構築・分割する。
暗黙のNeRF表現と比較すると,グループ化された3次元ガウシアンは,高画質,微粒度,高効率で,あらゆるものを3次元で再構成,分割,編集することができる。
論文 参考訳(メタデータ) (2023-12-01T17:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。