論文の概要: COBRA -- COnfidence score Based on shape Regression Analysis for method-independent quality assessment of object pose estimation from single images
- arxiv url: http://arxiv.org/abs/2404.16471v5
- Date: Mon, 09 Dec 2024 10:44:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:49:17.744315
- Title: COBRA -- COnfidence score Based on shape Regression Analysis for method-independent quality assessment of object pose estimation from single images
- Title(参考訳): COBRA -- 形状回帰分析に基づく単一画像からのオブジェクトポーズ推定の方法に依存しない品質評価
- Authors: Panagiotis Sapoutzoglou, Georgios Giapitzakis, Georgios Floros, George Terzakis, Maria Pateraki,
- Abstract要約: そこで本研究では,6次元オブジェクトのポーズ推定を汎用的に評価する手法を提案する。
提案手法は観測対象の幾何学における相違点の評価に依存する。
- 参考スコア(独自算出の注目度): 1.5146068448101742
- License:
- Abstract: We propose a generic procedure for assessing 6D object pose estimates. Our approach relies on the evaluation of discrepancies in the geometry of the observed object, in particular its respective estimated back-projection in 3D, against a putative functional shape representation comprising mixtures of Gaussian Processes, that act as a template. Each Gaussian Process is trained to yield a fragment of the object's surface in a radial fashion with respect to designated reference points. We further define a pose confidence measure as the average probability of pixel back-projections in the Gaussian mixture. The goal of our experiments is two-fold. a) We demonstrate that our functional representation is sufficiently accurate as a shape template on which the probability of back-projected object points can be evaluated, and, b) we show that the resulting confidence scores based on these probabilities are indeed a consistent quality measure of pose.
- Abstract(参考訳): そこで本研究では,6次元オブジェクトのポーズ推定を汎用的に評価する手法を提案する。
提案手法は, 観測対象の形状, 特に3次元における各推定逆投影における相違点の評価と, テンプレートとして作用するガウス過程の混合からなる関数的形状表現に依存する。
各ガウス過程は、指定された基準点に関して、放射状に物体の表面の断片を生成するように訓練される。
さらに、ポーズ信頼度をガウス混合における画素後方投影の平均確率として定義する。
私たちの実験の目標は2倍です。
a) 後方投影対象点の確率を評価可能な形状テンプレートとして,我々の機能表現が十分に正確であることを示し,
b) これらの確率に基づく信頼度スコアは、確かに一貫したポーズの質尺度であることを示す。
関連論文リスト
- ProPLIKS: Probablistic 3D human body pose estimation [7.397323069796547]
本稿では,確率論的モデルを用いた3次元人間のポーズ推定手法を提案する。
具体的には,SO(3)回転群に配向した流れを正規化し,M"オビウス変換に基づく結合機構を組み込む。
また,これらの入力を様々なポーズにマッピングする作業として,2次元画素配列の入力から3次元人物を再構成する課題を再解釈する。
論文 参考訳(メタデータ) (2024-12-05T23:21:05Z) - UNOPose: Unseen Object Pose Estimation with an Unposed RGB-D Reference Image [86.7128543480229]
単参照型オブジェクトポーズ推定のための新しいアプローチとベンチマークをUNOPoseと呼ぶ。
粗大なパラダイムに基づいて、UNOPoseはSE(3)不変の参照フレームを構築し、オブジェクト表現を標準化する。
重なり合う領域内に存在すると予測される確率に基づいて、各対応の重みを補正する。
論文 参考訳(メタデータ) (2024-11-25T05:36:00Z) - End-to-End Probabilistic Geometry-Guided Regression for 6DoF Object Pose Estimation [5.21401636701889]
最先端の6Dオブジェクトのポーズ推定器は、オブジェクト観察によってオブジェクトのポーズを直接予測する。
最先端アルゴリズムGDRNPPを再構成し,EPRO-GDRを導入する。
提案手法は,1つのポーズではなく1つのポーズ分布を予測することで,最先端の単一ビューのポーズ推定を改善することができることを示す。
論文 参考訳(メタデータ) (2024-09-18T09:11:31Z) - BOP-Distrib: Revisiting 6D Pose Estimation Benchmark for Better Evaluation under Visual Ambiguities [0.7499722271664147]
6次元ポーズ推定は、カメラの観察を最もよく説明する対象のポーズを決定することを目的としている。
現在、6次元ポーズ推定法は、その基礎となる真理アノテーションに対して、視覚的曖昧性は、グローバルなオブジェクト対称性にのみ関連していると考えるデータセット上でベンチマークされている。
本稿では,画像内の物体表面の視認性を考慮し,各画像に特有の6次元ポーズ分布を付加したデータセットのアノテート手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T13:52:26Z) - Towards Robust and Expressive Whole-body Human Pose and Shape Estimation [51.457517178632756]
全体のポーズと形状の推定は、単眼画像から人体全体の異なる振る舞いを共同で予測することを目的としている。
既存の手法では、既存のシナリオの複雑さの下で、しばしば劣化したパフォーマンスを示す。
全身のポーズと形状推定の堅牢性を高める新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-14T08:17:42Z) - A Stochastic-Geometrical Framework for Object Pose Estimation based on Mixture Models Avoiding the Correspondence Problem [0.0]
本稿では,複数特徴点の観測に基づくオブジェクトポーズ推定のための新しい幾何学的モデリングフレームワークを提案する。
混合モデルを用いた確率論的モデリングは、正確でロバストなポーズ推定の可能性を示している。
論文 参考訳(メタデータ) (2023-11-29T21:45:33Z) - 3D-Aware Hypothesis & Verification for Generalizable Relative Object
Pose Estimation [69.73691477825079]
一般化可能なオブジェクトポーズ推定の問題に対処する新しい仮説検証フレームワークを提案する。
信頼性を計測するために,2つの入力画像から学習した3次元オブジェクト表現に3次元変換を明示的に適用する3D認識検証を導入する。
論文 参考訳(メタデータ) (2023-10-05T13:34:07Z) - CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation [67.12857074801731]
そこで本研究では,シミュレートからリアルなポーズ推定のための新しい手法であるCPPF++を提案する。
投票衝突による課題に対処するため,投票の不確実性をモデル化する新たなアプローチを提案する。
ノイズの多いペアフィルタリング、オンラインアライメント最適化、機能アンサンブルなど、いくつかの革新的なモジュールを組み込んでいます。
論文 参考訳(メタデータ) (2022-11-24T03:27:00Z) - 6DOF Pose Estimation of a 3D Rigid Object based on Edge-enhanced Point
Pair Features [20.33119373900788]
本稿では,点対特徴量(PPF)に基づく効率的な6次元ポーズ推定手法を提案する。
エッジマッチング度を計算することにより、対称曖昧性を解決するために、ポーズ仮説の検証手法を提案する。
論文 参考訳(メタデータ) (2022-09-17T07:05:50Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
本稿では、勾配に基づくフィッティング法とパラメトリックニューラルネットワーク合成モジュールを組み合わせる。
画像合成ネットワークは、ポーズ設定空間を効率的に分散するように設計されている。
本研究では,2次元画像のみから高精度に物体の向きを復元できることを実験的に示す。
論文 参考訳(メタデータ) (2020-08-18T20:30:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。