Leaf-Based Plant Disease Detection and Explainable AI
- URL: http://arxiv.org/abs/2404.16833v1
- Date: Sun, 17 Dec 2023 03:40:12 GMT
- Title: Leaf-Based Plant Disease Detection and Explainable AI
- Authors: Saurav Sagar, Mohammed Javed, David S Doermann,
- Abstract summary: The agricultural sector plays an essential role in the economic growth of a country.
Plant Disease is one of the significant factors affecting the agricultural sector.
Researchers have explored many applications based on AI and Machine Learning techniques to detect plant diseases.
- Score: 16.128084819516715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The agricultural sector plays an essential role in the economic growth of a country. Specifically, in an Indian context, it is the critical source of livelihood for millions of people living in rural areas. Plant Disease is one of the significant factors affecting the agricultural sector. Plants get infected with diseases for various reasons, including synthetic fertilizers, archaic practices, environmental conditions, etc., which impact the farm yield and subsequently hinder the economy. To address this issue, researchers have explored many applications based on AI and Machine Learning techniques to detect plant diseases. This research survey provides a comprehensive understanding of common plant leaf diseases, evaluates traditional and deep learning techniques for disease detection, and summarizes available datasets. It also explores Explainable AI (XAI) to enhance the interpretability of deep learning models' decisions for end-users. By consolidating this knowledge, the survey offers valuable insights to researchers, practitioners, and stakeholders in the agricultural sector, fostering the development of efficient and transparent solutions for combating plant diseases and promoting sustainable agricultural practices.
Related papers
- A Semantic Segmentation Approach on Sweet Orange Leaf Diseases Detection Utilizing YOLO [0.0]
This research introduces an advanced method for diagnosing diseases in sweet orange leaves by utilising advanced artificial intelligence models like YOLOv8.
YOLOv8 is recognized for its rapid and precise performance, while VIT is acknowledged for its detailed feature extraction abilities.
During both the training and validation stages, YOLOv8 exhibited a perfect accuracy of 80.4%, while VIT achieved an accuracy of 99.12%.
arXiv Detail & Related papers (2024-09-10T17:40:46Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
optimisation is required for insect production to realise its full potential.
This can be by targeted improvement of traits of interest through selective breeding.
This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology.
arXiv Detail & Related papers (2024-06-26T07:50:58Z) - Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues [6.0460261046732455]
Food production is a vital global concern and the potential for an agritech revolution through artificial intelligence (AI) remains largely unexplored.
This paper presents a comprehensive review focused on the application of machine learning (ML) in agriculture, aiming to explore its transformative potential in farming practices and efficiency enhancement.
arXiv Detail & Related papers (2024-05-23T17:53:31Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - AGI for Agriculture [30.785325834651644]
Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education.
This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure.
arXiv Detail & Related papers (2023-04-12T19:39:49Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Farmer's Assistant: A Machine Learning Based Application for
Agricultural Solutions [0.0]
We create an open-source easy-to-use web application to address some of these issues which may help improve crop production.
In particular, we support crop recommendation, fertilizer recommendation, plant disease prediction, and an interactive news-feed.
arXiv Detail & Related papers (2022-04-24T19:31:10Z) - Computer Vision with Deep Learning for Plant Phenotyping in Agriculture:
A Survey [25.365163119362045]
Precision agriculture techniques allow the stakeholders to make effective and customized crop management decisions.
Plant phenotyping techniques play a major role in accurate crop monitoring.
This survey aims to introduce the reader to the state of the art research in deep plant phenotyping.
arXiv Detail & Related papers (2020-06-18T14:21:19Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.