Farmer's Assistant: A Machine Learning Based Application for
Agricultural Solutions
- URL: http://arxiv.org/abs/2204.11340v1
- Date: Sun, 24 Apr 2022 19:31:10 GMT
- Title: Farmer's Assistant: A Machine Learning Based Application for
Agricultural Solutions
- Authors: Shloka Gupta, Akshay Chopade, Nishit Jain, Aparna Bhonde
- Abstract summary: We create an open-source easy-to-use web application to address some of these issues which may help improve crop production.
In particular, we support crop recommendation, fertilizer recommendation, plant disease prediction, and an interactive news-feed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Farmers face several challenges when growing crops like uncertain irrigation,
poor soil quality, etc. Especially in India, a major fraction of farmers do not
have the knowledge to select appropriate crops and fertilizers. Moreover, crop
failure due to disease causes a significant loss to the farmers, as well as the
consumers. While there have been recent developments in the automated detection
of these diseases using Machine Learning techniques, the utilization of Deep
Learning has not been fully explored. Additionally, such models are not easy to
use because of the high-quality data used in their training, lack of
computational power, and poor generalizability of the models. To this end, we
create an open-source easy-to-use web application to address some of these
issues which may help improve crop production. In particular, we support crop
recommendation, fertilizer recommendation, plant disease prediction, and an
interactive news-feed. In addition, we also use interpretability techniques in
an attempt to explain the prediction made by our disease detection model.
Related papers
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - A Machine Learning Approach for Crop Yield and Disease Prediction Integrating Soil Nutrition and Weather Factors [0.0]
The development of an intelligent agricultural decision-supporting system for crop selection and disease forecasting in Bangladesh is the main objective of this work.
The recommended approach uses a variety of datasets on the production of crops, soil conditions, agro-meteorological regions, crop disease, and meteorological factors.
arXiv Detail & Related papers (2024-03-28T09:57:50Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Leaf-Based Plant Disease Detection and Explainable AI [16.128084819516715]
The agricultural sector plays an essential role in the economic growth of a country.
Plant Disease is one of the significant factors affecting the agricultural sector.
Researchers have explored many applications based on AI and Machine Learning techniques to detect plant diseases.
arXiv Detail & Related papers (2023-12-17T03:40:12Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Plant Disease Detection using Region-Based Convolutional Neural Network [2.5091819952713057]
Agriculture plays an important role in the food and economy of Bangladesh.
One of the major reasons behind low crop production is numerous bacteria, virus and fungal plant diseases.
This paper aims at building a lightweight deep learning model for predicting leaf disease in tomato plants.
arXiv Detail & Related papers (2023-03-16T03:43:10Z) - Automated Wheat Disease Detection using a ROS-based Autonomous Guided
UAV [0.0]
A smart autonomous system has been implemented on an unmanned aerial vehicle to automate the task of monitoring wheat fields.
An image-based deep learning approach is used to detect and classify disease-infected wheat plants.
A mapping and navigation system is presented using a simulation in the robot operating system and Gazebo environments.
arXiv Detail & Related papers (2022-06-30T06:12:48Z) - Towards a Multimodal System for Precision Agriculture using IoT and
Machine Learning [0.5249805590164902]
Technology like Internet of Things (IoT) for data collection, machine Learning for crop damage prediction, and deep learning for crop disease detection is used.
Various algorithms like Random Forest (RF), Light gradient boosting machine (LGBM), XGBoost (XGB), Decision Tree (DT) and K Nearest Neighbor (KNN) are used for crop damage prediction.
Pre-Trained Convolutional Neural Network (CNN) models such as VGG16, Resnet50, and DenseNet121 are also trained to check if the crop was tainted with some illness or not.
arXiv Detail & Related papers (2021-07-10T19:19:45Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.