A Semantic Segmentation Approach on Sweet Orange Leaf Diseases Detection Utilizing YOLO
- URL: http://arxiv.org/abs/2409.06671v1
- Date: Tue, 10 Sep 2024 17:40:46 GMT
- Title: A Semantic Segmentation Approach on Sweet Orange Leaf Diseases Detection Utilizing YOLO
- Authors: Sabit Ahamed Preanto, Md. Taimur Ahad, Yousuf Rayhan Emon, Sumaya Mustofa, Md Alamin,
- Abstract summary: This research introduces an advanced method for diagnosing diseases in sweet orange leaves by utilising advanced artificial intelligence models like YOLOv8.
YOLOv8 is recognized for its rapid and precise performance, while VIT is acknowledged for its detailed feature extraction abilities.
During both the training and validation stages, YOLOv8 exhibited a perfect accuracy of 80.4%, while VIT achieved an accuracy of 99.12%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research introduces an advanced method for diagnosing diseases in sweet orange leaves by utilising advanced artificial intelligence models like YOLOv8 . Due to their significance as a vital agricultural product, sweet oranges encounter significant threats from a variety of diseases that harmfully affect both their yield and quality. Conventional methods for disease detection primarily depend on manual inspection which is ineffective and frequently leads to errors, resulting in delayed treatment and increased financial losses. In response to this challenge, the research utilized YOLOv8 , harnessing their proficiencies in detecting objects and analyzing images. YOLOv8 is recognized for its rapid and precise performance, while VIT is acknowledged for its detailed feature extraction abilities. Impressively, during both the training and validation stages, YOLOv8 exhibited a perfect accuracy of 80.4%, while VIT achieved an accuracy of 99.12%, showcasing their potential to transform disease detection in agriculture. The study comprehensively examined the practical challenges related to the implementation of AI technologies in agriculture, encompassing the computational demands and user accessibility, and offering viable solutions for broader usage. Moreover, it underscores the environmental considerations, particularly the potential for reduced pesticide usage, thereby promoting sustainable farming and environmental conservation. These findings provide encouraging insights into the application of AI in agriculture, suggesting a transition towards more effective, sustainable, and technologically advanced farming methods. This research not only highlights the efficacy of YOLOv8 within a specific agricultural domain but also lays the foundation for further studies that encompass a broader application in crop management and sustainable agricultural practices.
Related papers
- Advancing Cucumber Disease Detection in Agriculture through Machine Vision and Drone Technology [0.0]
This study uses machine vision and drone technologies to propose a unique method for the diagnosis of cucumber disease in agriculture.
The backbone of this research is a painstakingly curated dataset of hyperspectral photographs acquired under genuine field conditions.
The model achieves an excellent 87.5% accuracy in distinguishing eight unique cucumber illnesses.
arXiv Detail & Related papers (2024-09-18T22:54:23Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
optimisation is required for insect production to realise its full potential.
This can be by targeted improvement of traits of interest through selective breeding.
This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology.
arXiv Detail & Related papers (2024-06-26T07:50:58Z) - YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain [0.5639904484784127]
This survey investigates the transformative potential of various YOLO variants, from YOLOv1 to the state-of-the-art YOLOv10.
The primary objective is to elucidate how these cutting-edge object detection models can re-energise and optimize diverse aspects of agriculture.
The findings contribute towards a nuanced understanding of the potential for precision farming and sustainable agricultural practices.
arXiv Detail & Related papers (2024-06-14T15:48:43Z) - Overcoming LLM Challenges using RAG-Driven Precision in Coffee Leaf Disease Remediation [0.0]
This research introduces an innovative AI-driven precision agriculture system, leveraging YOLOv8 for disease identification and Retrieval Augmented Generation (RAG) for context-aware diagnosis.
The system integrates sophisticated object detection techniques with language models to address the inherent constraints associated with Large Language Models (LLMs)
arXiv Detail & Related papers (2024-05-02T14:19:25Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - Leaf-Based Plant Disease Detection and Explainable AI [16.128084819516715]
The agricultural sector plays an essential role in the economic growth of a country.
Plant Disease is one of the significant factors affecting the agricultural sector.
Researchers have explored many applications based on AI and Machine Learning techniques to detect plant diseases.
arXiv Detail & Related papers (2023-12-17T03:40:12Z) - Crop Disease Classification using Support Vector Machines with Green
Chromatic Coordinate (GCC) and Attention based feature extraction for IoT
based Smart Agricultural Applications [0.0]
Plant diseases can negatively affect leaves during agricultural cultivation, resulting in significant losses in crop output and economic value.
Various machine learning (ML) as well as deep learning (DL) algorithms have been created & studied for the identification of plant disease detection.
This article presents a novel classification method that builds on prior work by utilising attention-based feature extraction, RGB channel-based chromatic analysis, Support Vector Machines (SVM) for improved performance.
arXiv Detail & Related papers (2023-11-01T10:44:49Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.