Anomaly Detection for Incident Response at Scale
- URL: http://arxiv.org/abs/2404.16887v1
- Date: Wed, 24 Apr 2024 00:46:19 GMT
- Title: Anomaly Detection for Incident Response at Scale
- Authors: Hanzhang Wang, Gowtham Kumar Tangirala, Gilkara Pranav Naidu, Charles Mayville, Arighna Roy, Joanne Sun, Ramesh Babu Mandava,
- Abstract summary: We present a machine learning-based anomaly detection product that monitors Walmart's business and system health in real-time.
During the validation over 3 months, the product served predictions from over 3000 models to more than 25 application, platform, and operation teams.
AIDR has achieved success with various internal teams with lower time to detection and fewer false positives than previous methods.
- Score: 1.284857579394658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a machine learning-based anomaly detection product, AI Detect and Respond (AIDR), that monitors Walmart's business and system health in real-time. During the validation over 3 months, the product served predictions from over 3000 models to more than 25 application, platform, and operation teams, covering 63\% of major incidents and reducing the mean-time-to-detect (MTTD) by more than 7 minutes. Unlike previous anomaly detection methods, our solution leverages statistical, ML and deep learning models while continuing to incorporate rule-based static thresholds to incorporate domain-specific knowledge. Both univariate and multivariate ML models are deployed and maintained through distributed services for scalability and high availability. AIDR has a feedback loop that assesses model quality with a combination of drift detection algorithms and customer feedback. It also offers self-onboarding capabilities and customizability. AIDR has achieved success with various internal teams with lower time to detection and fewer false positives than previous methods. As we move forward, we aim to expand incident coverage and prevention, reduce noise, and integrate further with root cause recommendation (RCR) to enable an end-to-end AIDR experience.
Related papers
- TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
We propose a temporal variational autoencoder (TeVAE) that can detect anomalies with minimal false positives when trained on unlabelled data.
When properly configured, TeVAE flags anomalies only 6% of the time wrongly and detects 65% of anomalies present.
arXiv Detail & Related papers (2024-07-09T13:32:33Z) - Systematic Review: Anomaly Detection in Connected and Autonomous Vehicles [0.0]
This systematic review focuses on anomaly detection for connected and autonomous vehicles.
The most commonly used Artificial Intelligence (AI) algorithms employed in anomaly detection are neural networks like LSTM, CNN, and autoencoders, alongside one-class SVM.
There is a need for future research to investigate the deployment of anomaly detection to a vehicle to assess its performance on the road.
arXiv Detail & Related papers (2024-05-04T18:31:38Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
We introduce a novel introspection solution for 2D object detection based on Deep Neural Networks (DNNs)
We implement several state-of-the-art (SOTA) introspection mechanisms for error detection in 2D object detection, using one-stage and two-stage object detectors evaluated on KITTI and BDD datasets.
Our performance evaluation shows that the proposed introspection solution outperforms SOTA methods, achieving an absolute reduction in the missed error ratio of 9% to 17% in the BDD dataset.
arXiv Detail & Related papers (2024-03-02T10:56:14Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - MA-VAE: Multi-head Attention-based Variational Autoencoder Approach for
Anomaly Detection in Multivariate Time-series Applied to Automotive Endurance
Powertrain Testing [0.7499722271664147]
We propose a variational autoencoder with multi-head attention (MA-VAE)
When trained on unlabelled data, MA-VAE provides very few false positives but also manages to detect the majority of anomalies presented.
It is 9% of the time wrong when an anomaly is flagged and discovers 67% of the anomalies present.
arXiv Detail & Related papers (2023-09-05T14:05:37Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.