論文の概要: Learning Actionable Counterfactual Explanations in Large State Spaces
- arxiv url: http://arxiv.org/abs/2404.17034v1
- Date: Thu, 25 Apr 2024 20:49:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-04-29 14:33:49.362612
- Title: Learning Actionable Counterfactual Explanations in Large State Spaces
- Title(参考訳): 大規模国家空間における行動可能な対実的説明の学習
- Authors: Keziah Naggita, Matthew R. Walter, Avrim Blum,
- Abstract要約: 最適CFEが重み付き被覆問題の解に対応するような設定を考える。
本研究では,実験により高い性能が得られることを示す深層ネットワーク学習手法を提案する。
我々の問題は、大規模だが決定論的マルコフ決定過程の族において最適な政策を学ぶことの1つと見なすこともできる。
- 参考スコア(独自算出の注目度): 16.30292272064278
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Counterfactual explanations (CFEs) are sets of actions that an agent with a negative classification could take to achieve a (desired) positive classification, for consequential decisions such as loan applications, hiring, admissions, etc. In this work, we consider settings where optimal CFEs correspond to solutions of weighted set cover problems. In particular, there is a collection of actions that agents can perform that each have their own cost and each provide the agent with different sets of capabilities. The agent wants to perform the cheapest subset of actions that together provide all the needed capabilities to achieve a positive classification. Since this is an NP-hard optimization problem, we are interested in the question: can we, from training data (instances of agents and their optimal CFEs) learn a CFE generator that will quickly provide optimal sets of actions for new agents? In this work, we provide a deep-network learning procedure that we show experimentally is able to achieve strong performance at this task. We consider several problem formulations, including formulations in which the underlying "capabilities" and effects of actions are not explicitly provided, and so there is an informational challenge in addition to the computational challenge. Our problem can also be viewed as one of learning an optimal policy in a family of large but deterministic Markov Decision Processes (MDPs).
- Abstract(参考訳): 対実的説明(CFEs)とは、負の分類を持つエージェントが(望まれる)肯定的な分類を達成するための一連の行動である。
本研究では,重み付き集合被覆問題の解に対応する最適CFEの設定について考察する。
特に、エージェントが実行可能なアクションの集合があり、それぞれが独自のコストを持ち、それぞれのエージェントに異なる機能セットを提供する。
エージェントは、ポジティブな分類を達成するために必要なすべての能力を提供する、最も安価なアクションサブセットを実行したいと考えています。
トレーニングデータ(エージェントのインスタンスとそのCFE)から、新しいエージェントに迅速に最適なアクションセットを提供するCFEジェネレータを学習できますか?
本研究では,本課題において,実験的に高い性能を達成できる深層ネットワーク学習手法を提案する。
基礎となる「能力」と行動の効果を明示しない定式化を含む,いくつかの問題定式化について考察する。
我々の問題は、大規模だが決定論的マルコフ決定過程(MDP)のファミリーで最適な政策を学ぶことの1つと見なすこともできる。
関連論文リスト
- Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
エンボディード・エージェントは、複数のドメインにまたがって大きな潜在能力を示す。
既存の研究は主に、一般的な大言語モデルのセキュリティに重点を置いている。
本稿では, エンボディエージェントの保護を目的とした新しい入力モデレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-22T08:34:35Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
推薦システム(RSRS)は、ユーザの好みとプライバシの両方に対処する。
通信効率を向上させるために,非一様勾配勾配勾配を取り入れた新しい手法を提案する。
RFRecFの強靭性は、多様なベースラインに比べて優れている。
論文 参考訳(メタデータ) (2024-11-03T12:10:20Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
我々は、人間の指示なしにタスクを予測および開始できるプロアクティブエージェントを開発するという課題に取り組む。
まず,実世界の人的活動を収集し,前向きなタスク予測を生成する。
これらの予測は、ヒトのアノテータによって受け入れられるか拒否されるかのどちらかとしてラベル付けされる。
ラベル付きデータは、人間の判断をシミュレートする報酬モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2024-10-16T08:24:09Z) - Satisficing Exploration for Deep Reinforcement Learning [26.73584163318647]
現実世界の広大さと規模にアプローチする複雑な環境では、最適な性能を達成することは、実際には完全に難易度の高い試みであるかもしれない。
最近の研究は、情報理論から設計エージェントへのツールを活用し、十分な満足や満足のいくソリューションを優先して最適なソリューションを意図的に実現している。
モデルベース計画の必要性を回避し、満足度の高いポリシーを学習できるように、最適な値関数に対する不確実性を直接表現するエージェントを拡張します。
論文 参考訳(メタデータ) (2024-07-16T21:28:03Z) - GLANCE: Global Actions in a Nutshell for Counterfactual Explainability [10.25011737760687]
2つのアルゴリズムからなる多目的かつ適応的なフレームワークであるGLANCEを紹介する。
C-GLANCEは、特徴空間と反現実的アクションの空間の両方を考慮するクラスタリングアプローチを採用している。
T-GLANCEは柔軟性を高めるための追加機能を提供する。
論文 参考訳(メタデータ) (2024-05-29T09:24:25Z) - Universal Adversarial Perturbations for Vision-Language Pre-trained Models [30.04163729936878]
我々は,UAP(Universal Adversarial Perturbations)を生成する新しいブラックボックス手法を提案する。
ETUは、UAPの特性と本質的な相互モーダル相互作用を考慮し、効果的なUAPを生成する。
さらに,UAPの有効性と転送性を高めるために,ScMixという新しいデータ拡張手法を設計する。
論文 参考訳(メタデータ) (2024-05-09T03:27:28Z) - Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
マルチエージェント強化学習(MARL)における一般化の課題
エージェントが未確認のコプレイヤーに影響される程度は、エージェントのポリシーと特定のシナリオに依存する。
与えられたシナリオと環境におけるエージェント間の相互作用強度を定量化する指標であるLoI(Level of Influence)を提示する。
論文 参考訳(メタデータ) (2023-10-11T06:09:26Z) - Flexible and Robust Counterfactual Explanations with Minimal Satisfiable
Perturbations [56.941276017696076]
我々は、最小満足度摂動(CEMSP)を用いた対実的説明法という概念的に単純だが効果的な解を提案する。
CEMSPは、意味論的に意味のある正常範囲の助けを借りて、異常な特徴の値を変更することを制限している。
既存の手法と比較して、我々は合成データセットと実世界のデータセットの両方で包括的な実験を行い、柔軟性を維持しつつ、より堅牢な説明を提供することを示した。
論文 参考訳(メタデータ) (2023-09-09T04:05:56Z) - For Better or Worse: The Impact of Counterfactual Explanations'
Directionality on User Behavior in xAI [6.883906273999368]
対物的説明(CFE)は説明可能な人工知能(xAI)の一般的なアプローチである
CFEは、事実状態(上向きCFE)よりも優れているシナリオや、事実状態(下向きCFE)よりも悪いシナリオを記述します。
本研究では,CFEの方向性が参加者の行動と経験に及ぼす影響を自動システムから新たな知識を引き出すために比較した。
論文 参考訳(メタデータ) (2023-06-13T09:16:38Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Sample-Efficient Multi-Objective Learning via Generalized Policy
Improvement Prioritization [8.836422771217084]
マルチオブジェクト強化学習(MORL)アルゴリズムは、エージェントが異なる好みを持つ可能性のあるシーケンシャルな決定問題に対処する。
本稿では、一般化政策改善(GPI)を用いて、原則的、正式に派生した優先順位付けスキームを定義する新しいアルゴリズムを提案する。
実験により,本手法は多目的タスクの挑戦において,最先端のMORLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-01-18T20:54:40Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Formalizing the Problem of Side Effect Regularization [81.97441214404247]
本稿では,補助ゲームフレームワークを用いたサイドエフェクト正規化のための公式な基準を提案する。
これらのゲームでは、エージェントは部分的に観測可能なマルコフ決定プロセスを解決する。
このPOMDPは、エージェントが将来的なタスクをこなす能力と、プロキシ報酬を交換することで解決されることを示す。
論文 参考訳(メタデータ) (2022-06-23T16:36:13Z) - PAC: Assisted Value Factorisation with Counterfactual Predictions in
Multi-Agent Reinforcement Learning [43.862956745961654]
多エージェント強化学習(MARL)は、値関数分解法の開発において大きな進歩をみせている。
本稿では、部分的に観測可能なMARL問題において、エージェントの動作に対する順序付けが同時に制約を課す可能性があることを示す。
最適関節動作選択の対実予測から得られる情報を活用する新しいフレームワークであるPACを提案する。
論文 参考訳(メタデータ) (2022-06-22T23:34:30Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Amortized Generation of Sequential Counterfactual Explanations for
Black-box Models [26.91950709495675]
事実的説明(CFE)は、フォームのフィードバックを提供する。
現在のCFEアプローチは、シングルショット -- つまり、単一の期間で$x$を$x'$に変更できると仮定する。
我々は、$x$を中間状態から最終状態に移動させるシーケンシャルなCFEを生成する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-07T20:54:48Z) - Attention Actor-Critic algorithm for Multi-Agent Constrained
Co-operative Reinforcement Learning [3.296127938396392]
協調的な環境下での強化学習(RL)エージェントの最適動作の計算問題について考察する。
我々はこのアルゴリズムを制約付きマルチエージェントRL設定に拡張する。
論文 参考訳(メタデータ) (2021-01-07T03:21:15Z) - Reinforcement Learning with Efficient Active Feature Acquisition [59.91808801541007]
実生活では、情報取得は患者の医療検査に該当する可能性がある。
本稿では,アクティブな特徴獲得ポリシーを学習するモデルに基づく強化学習フレームワークを提案する。
この成功の鍵は、部分的に観察された状態から高品質な表現を学ぶ新しい逐次変分自動エンコーダである。
論文 参考訳(メタデータ) (2020-11-02T08:46:27Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
片側予測(OSP)に基づく緩和は、実際に関係する高目標精度体制において、ほぼ最適カバレッジが得られるSCスキームをもたらす。
理論的には,SCとOSPのバウンダリ一般化を導出し,その手法が小さな誤差レベルでのカバレッジにおいて,技術手法の状態を強く上回ることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:14:27Z) - Scaling Guarantees for Nearest Counterfactual Explanations [17.590082025924747]
アルゴリズムの決定を説明するために、カウンターファクトな説明が広く使われている。
我々はMIP(Mixed-Integer Programming)に基づくフレームワークを提供し、最も近い事実的説明を計算する。
我々のアプローチは、距離保証と完全カバレッジの両方で、多様なCFEを効率的に計算できる。
論文 参考訳(メタデータ) (2020-10-10T10:05:50Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。