Calculation of Femur Caput Collum Diaphyseal angle for X-Rays images using Semantic Segmentation
- URL: http://arxiv.org/abs/2404.17083v2
- Date: Sun, 26 May 2024 21:00:11 GMT
- Title: Calculation of Femur Caput Collum Diaphyseal angle for X-Rays images using Semantic Segmentation
- Authors: Muhammad Abdullah, Anne Querfurth, Deepak Bhatia, Mahdi Mantash,
- Abstract summary: This paper investigates the use of deep learning approaches to estimate the femur caput-collum-diaphyseal angle from X-ray images.
We present a deep-learning algorithm that can reliably estimate the femur CCD angle from X-ray images.
- Score: 2.3757237109481557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the use of deep learning approaches to estimate the femur caput-collum-diaphyseal (CCD) angle from X-ray images. The CCD angle is an important measurement in the diagnosis of hip problems, and correct prediction can help in the planning of surgical procedures. Manual measurement of this angle, on the other hand, can be time-intensive and vulnerable to inter-observer variability. In this paper, we present a deep-learning algorithm that can reliably estimate the femur CCD angle from X-ray images. To train and test the performance of our model, we employed an X-ray image dataset with associated femur CCD angle measurements. Furthermore, we built a prototype to display the resulting predictions and to allow the user to interact with the predictions. As this is happening in a sterile setting during surgery, we expanded our interface to the possibility of being used only by voice commands. Our results show that our deep learning model predicts the femur CCD angle on X-ray images with great accuracy, with a mean absolute error of 4.3 degrees on the left femur and 4.9 degrees on the right femur on the test dataset. Our results suggest that deep learning has the potential to give a more efficient and accurate technique for predicting the femur CCD angle, which might have substantial therapeutic implications for the diagnosis and management of hip problems.
Related papers
- AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
We propose a novel detection model named textbfAttCDCNet for the task of X-ray image diagnosis.
The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography dataset.
arXiv Detail & Related papers (2024-10-20T16:08:20Z) - B-Spine: Learning B-Spline Curve Representation for Robust and
Interpretable Spinal Curvature Estimation [50.208310028625284]
We propose B-Spine, a novel deep learning pipeline to learn B-spline curve representation of the spine.
We estimate the Cobb angles for spinal curvature estimation from low-quality X-ray images.
arXiv Detail & Related papers (2023-10-14T15:34:57Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
Sparse-angle tomographic scans reduce radiation and accelerate data acquisition, but suffer from image artifacts and noise.
Existing image processing algorithms can restore CT reconstruction quality but often require large training data sets or can not be used for truncated objects.
This work presents a self-supervised projection inpainting method that allows optimizing missing projective views via gradient-based optimization.
arXiv Detail & Related papers (2023-02-13T15:15:18Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
Study on COVID-19 Chest X-ray Image [3.135883872525168]
Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff.
Deep learning has been applied to perform COVID-19 infection region segmentation and disease classification.
We propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration.
arXiv Detail & Related papers (2022-05-27T20:06:45Z) - Learning Perspective Deformation in X-Ray Transmission Imaging [8.55389652039053]
In cone-beam X-ray transmission imaging, due to the divergence of X-rays, imaged structures with different depths have different magnification factors on an X-ray detector.
Perspective deformation causes difficulty in direct, accurate geometric assessments of anatomical structures.
We investigate on learning perspective deformation, i.e., converting perspective projections into orthogonal projections.
arXiv Detail & Related papers (2022-02-13T17:25:01Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - Pseudo-domains in imaging data improve prediction of future disease
status in multi-center studies [57.712855968194305]
We propose a prediction method that can cope with a high number of different scanning sites and a low number of samples per site.
Results show that they improve the prediction accuracy for steatosis after 48 weeks from imaging data acquired at an initial visit and 12-weeks follow-up in liver disease.
arXiv Detail & Related papers (2021-11-15T09:40:54Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.